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I. INTRODUCTION

> This report covers a very diversef/ﬁazzz:;;;P“effort to
explore and develop the role of optical computing for SDI
purposes. \gart of this effort was through subcontractors
whose final\ eports are separately appended. Other parts of
this work, were involved in efforts to unify and publicize
the activity o , SDI in optical computing. We believe this
effort was impoftant in counteracting the assertions made by
disgruntled scien;}sps in other fields that SDI funding was
only for "mediocre sci;;EIEEET"’ The Waj effort was primarily -
in two fields: Optical Algebra and Massive Parallel
Holographic Interconnection. “In éddition to that,>there was
work on a variety of other activities such as pattern
recognition, optical interconnection, and low energy optical
computing. - This gepo;?_will attempt to organize, capsulize,
and commenthgéﬁ thése ;;rious activities. 1In addition, we
include some of the relevant technical documents as
appendixes in order to provide more detail for those who wish
to have it. Finally, we offer a program wrap-up which
demonstrates quite conclusively that the effort under this
contract was not only fruitful, but also generative of
considerable current and future activity. Thus, this program
has planted seeds that will lead, in a significant degree, to

the accomplishment of the original goal of making optical

computing useful for SDI and for America.




IT. OPTICAL ALGEBRA

‘”Optics has been suggested for algebra for many years,
because there are geometry in configurations which permit it
to be done extremely rapidlx. ’Before our work: the major
problem with optical algebr;m;a;f;;at high accuracy was
essentially unobtainable. One of the primary goals of our
program was to show that;;é;could use low accuracy optics for
the computationally intense part of algebraic computations
and bootstrap the accuracy with moderately high accuracy

digital electronics in very simple, hard-wired

configurations._\gvgry technical library has many shelves

Cot P

full of books on nufierical algebra. All of them assure the
reader that low accuracy processors are worthless in
obtaining even moderately accurate results for any realistic
problem and that for ill-conditions or singular equation
sets, low accuracy processors are worthless. If we believe
the results of the great mathematicians, who wrote those
books, it is clear that optical algebra is doomed unless it
is possible to somehow change the rules or change the
problems. There follows an account of exactly how we did
that.

According to various estimates, somewhere between 50%
and 75% of all CPU time in the United States is spent in
solving some sort of linear algebra. Examples include least
squares analysis, antenna beam steering, linear regression,

computational fluid dynamics, finite element analysis, or




simply N linear equations with N unknowns.

Other nonlinear algebra problems are also important.
These include image processing, linear programming, and super
resolution.

To the extent that optics can solve such problems in a
parallel fashion, it can lead to small fast processors which

would greatly improve the utility of trackers, radar, sonar,

etc.

WHAT IS THE CURRENT STATUS?

We want to solve problems like
2 X, +3 xXx,+x53=4
3 X, +X,+3 x45=2
3 X, +4%x,+7x5=1
We can represent these generally as
A x =b.

In this case

2 3 1
A= 3 1 1
L3 4 7
4 X,
b = 2 and X = X5
1 Xq

The matrix A and the vector b are given. We seek the vector

X.
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There is a way to assign a single number (a "norm")

to vectors and matrices. We normally use the Euclidean norm,

e.qg.
2 2 2 |5
x|l = | % + x, + %

The word "solve" has two different meanings. We
presume there is a "true" answer x,. We can say we have an
€ - accurate solution if

l = -x | <e€.
A weaker sense of "solve” is

Il b-2a=x]|<e.
This is weaker in the rough sense that some good solutions in
this sense may not be close to x,. On the other hand, for
many problems, this "low residual” solution is perfectly
adequate. The Bimodal Optical Computer (BOC) minimizes the
residual.

One speaks of computational complexity in terms of how
something scales with some resource. We will speak of
spatial and temporal complexity. We will represent an N x N
matrix in parallel using N° numbers. We say the spatial
complexity scales on the order of NZ, written O(Nz). We will
show that the temporal complexity is 0(1l), i.e., independent
of N, provided that N is small enough to be represented

spatially in our processor.




The most basic concepts are over a century old (due to
Lord Kelvin).

(1) We use a fast, low-accuracy processor to
obtain a first guess x,,

(2) We use a slow, accurate processor to evaluate
the residual r; = b - A x,,
if | r, | < €, stop.

(3) Otherwise, use the low accuracy solver to

solve for Ax, = r,. If we could solve that
problem curately, then x, = x, + Ax, would

have zero residual. Thus,

A X =237 (X, + A X,)
=A X, +AAX

= A X, + I,

Ax, +b-Ax
= b.
(4) Use the slow, accurate processor to evaluate
r,=b-ax, if | r, | < €, stop. Otherwise
go to (3).
Some algebra problems resist accurate solution more than

others. 1In high school, we solved N=2 problems graphically.

xl\ ¢— Equation |

¢— Equation 2

(s)
X X,
x & \




The solution is x, ¥, x, . Problems like this are said to
be "well conditioned" and are quite rare in real life. A

more common case is

X, \
:}\\\\\ EQUATION 1
EQUATION 2 l/
\\ X,
Such problems are said to be "ill conditioned." 1If the lines
are parallel, we say A is "singular." Let us now make this

somewhat more rigorous. Let us define a "condition number"

@ =Jal-|atl]
Then
e (Il = =x@ (P,
where
€ (| x ||) = relative error in the result and
€ (P) = relative accuracy of the processor.
6




If we have ¢ (P) = 0.1 (very good optics) and y (A) = 10
(wonderfully benign problem),

e (Il =l =1,
i.e., 100% errors are likely.
This is why we go to 32 bit floating point electronics. No
one wants an answer accurate to one part in 232 (~ 4 x 109).

We need that to get meaningful answers for large x. The

ultimate ill-conditioning, singularity, corresponds to
infinite x. Such problems are common.
In roughly 1985, Caulfield showed that this iterative

process converges (roughly) if

1
€ (P) < TTEN) ’
For good optics, € (P) = 0.1. Thus we need
x (A) <5

to guarantee solution. This is silly. No real problems are

so benign.

In 1987, we showed that replacing A by A" = A + E where

E is an error matrix and

lel /0 all <<z,

leads to convergence for all problems independently of y.
For large y, the x which minimizes || r | may be less close
to x, than would be the case for small y. Nevertheless, we

can drive | r | to zero in very few iterations even for

singular matrices. Call this Breakthrough 1.

To do the fast, low-accuracy solution O (1) in time; we
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To do the fast, low-accuracy solution O (1) in time:; we

use another trick. We employ a parallel A x = y device.

X— —,— - -7 oY

; A '

XM__' - - - - - - ‘?YM

These are easy in optics. Wai Cheng and Caulfield showed
that if we correct x,, with a signal proportional to b, - y,,
for all k, then this system would "relax from any starting x
to one satisfying A x = b (in the low | r | sense) under the
circumstance that A is "positive definite." To explain this,
we need one more diversion.

A vector e such that

Ae=1ge,
where 1 is a scalar, is said to be an "eigenvalue." Let us

arrange the eigenvalues of A such that

Ay <Ay <o v e <AL

(r connotes "rank," a concept we choose not to define here).
Interestingly,

x () =12 |/]4].




The interesting thing for our purposes is that the relaxation
processor converges at a rate (roughly) of
At
e 7.
Obviously if 4, > O, it does not converge. Here t is

normalized by the round trip time in the system. A matrix

for which 4, > O, is said to be positive definite. A matrix

can undergo a row-for-column switch to form a transpose

T _ 13

Since the matrix elements may be complex, we can complex
conjugate a matrix A to get A*. We call

(a%x)" = (al)* = A",
the Hermitian of A. For any matrix both AA" and A'A are

nonnegative definite (4, > 0). We noted that A"A + E and

AA" + E are positive definite if E > o.

Note, though,

AX=0>0
A"'a x = A" b.

Write

and




Then
Bx=c¢
and B is nonnegative definite (likewise for AaA"). Applying
our method to this makes all methods converge even though
1 (a"a) =1 (aa") = 22,
a normally disastrous event. These realizations are
Breakthrough 2.
Many other things done in BOCs are pretty, but those two

are essence. Of the two, Breakthrough 1 is essential.

Breakthrough 2 allows 0 (1) solutions.

SUMMARY
CONVENTIONAL BIMODAL
ALGEBRA ON OPTICAL
DIGITAL COMPUTERS COMPUTERS
- SEEKS | x - %, | < ¢ - SEEKS | b-Ax | < ¢
*  REQUIRES ROUGHLY « O (1) TEMPORAL
0 (N°) TEMPORAL COMPLEXITY
COMPLEXITY
« ALGORITHM MATCHED « CONSTANT ALGORITHM
TO PROBLEM SUFFICES
- el xl) ax () - Ib-ax| >0
INDEPENDENTLY OF X (A)
- E(l x|) e E (P) - Ibp-nax| <e

INDEPENDENTLY OF E (P)

The highlights of this period include a laboratory
demonstration of an 0 (1) time solver of even singular matrix
equations and the first vigorous mathematical proof of how

this works. Appendix A gives those details.

10




In the appendix, we show papers from optics journals and
mathematics journals giving in mathematical detail the proof
in illustration that these concepts are workable. In terms
of applications to SDI, these might range from signal
processing (where constrained linear equations lead to fast
image restoration) to phased array radar (where the magnitude
of jammer signals is essentially irrelevant and processor
speed is independent of the number of elements in the radar).
While IBM is working on the approach we developed as a
possible electronic product, Nodal Systems Corporation is
planning on investing tens of millions of dollars to develop
this technology as an cptical algebra processor. That
processor would be able to operate on very large (tens of
thousands in each dimension) algebraic problems and achieve
high accuracy even for ill-conditioned systems at very high
speed.

ITI. MASSIVE PARALLEL INTERCONNECTION

Before this program, what was meant by massive parallel
interconnection was the connection of each element of a one
dimensional optical input to each element of a one
dimensional optical output. If both input and output had
dimensionality N, then there were N° parallel, weighted
optical interconnections. It was argued that this offered an
advantage over electronics. The argument may well be correct
for a large N, but it is not altogether certain. To achieve
an indisputable advantage for optics over electronics, we

sought to connect a N x N input array to a N x N output array

11




using N* parallel weighted interconnections. For large N
(100 to 1000), the number of parallel weighted
interconnections is significantly more than can ever be
accomplished with eleqtronics. Let us try to justify that
statement by considering connecting a 1000 x 1000 array of
electrical signals to a 1000 x 1000 array of other electrical
elements using wires. By this conceptual design, we will
allow ourselves 22nd century technology. For instance, we
will assume that the interconnections can be made with
submicron diameter wires such that the wires plus insulators
are only one micron in diameter. This means that the full
set of 10" wires could fit in a very small cross sectional
area of only one meter by one meter. Actually, of course,
that is not the case. The reason a much larger area will be
required is that the wires must be scrambled and criss-cross
one another. If we are very clever, perhaps we could fit
that into a two meter by two meter area. The length of that
bundle of wires would have to exceed the width. We can
optimistically assume that the length of the interconnection
bundle will be only four meters. Thus, the whole
interconnection can fit in a package only two meters by two
meters by four meters. SDI will not fly this in the head of
a missile, but the assembly of that many wires can at least
be done. Some technology, not known to us, must be used to
set the resistances of the various wires (the weights).
Since we don't know what that technology is, we will not

explain it here. The interaction among currents in those

12




various wires will be very severe. This will vastly increase
both the delays (which will be quite variable among
interconnections) and the required power. Let us again
invoke future technological wonders and assume those problems
can be made to vanish or be negligible. Then the sole

2 submicron wires

remaining problem is simply to bond the 10
to the appropriate bonding pads. Again invoking 21st century
technology, we assume a bonding machine can be made that
makes 1000 perfect bonds of submicron wires to appropriate
bonding pads every second. Such a bonding machine would be a
great marvel indeed, but it would have to operate
continuously for four years just to hook up the system. Of
course, we have neglected the question of how one might check
out such a system. Nevertheless, these considerations
suggest that, for all practical purposes, such
interconnection is impossible with electronics.
BASIC CONCEPT

Fig. 2 shows the basic concept schematically. The input
is a two dimensional array of modulators (A Spatial Light
Modulator or SILM). 1In this drawing, it is shown as a
transmissive SILM. In other cases, it can reflective. The
two dimensional output array can be thought of as detectors,
bi-stable optical devices, or any other useful components. A
lens or lens system images a two dimensional array of
holograms onto the two dimensional array of outputs through
the SILM. All of the holograms are simultaneously

illuminated. The ij hologram is imaged onto the ij SLM. The

13




strength of light from the ij hologram to the k1l element of
the SIM may be called T;;,. The amount of light transmitted
through the kl element depends on the input which we may call
a, - Thus the transmitted light from the ij hologram through
the k1l element is Tijx. .- The lens collects such
contributions over the entire SIM. That is, the amount of
light arriving at the ij element in the output plane is

bj; = Z Tijt @k

kl

We recognize this as the ij element of the product of the two
dimensional matrix A whose ij element is a;; with the four
dimensional tensor whose ijkl component is Tk * Rewriting
this in more compact form, we have
B = TA.

A very detailed analysis of the potientiality and limitations
of this technique may be found among the references in
Appendix B.
APPLICATIONS

Numerous applications of this technology can be found.
The one developed especially for this program was massively
parallel cellular array processors. This is discussed in the
appendix. Numerous other applications are obvious and have
begun to be discussed in the literature. Perhaps the most
obvious is optical neural networks. Other applications are

generalized Hough transforms and digital optical computers.

14




generalized Hough transforms and digital optical computers.
In another portion of the overall ONR/SDI program, Peter
Guilfoyle and co-workers made significant improvements in the
digital optical computer concepts first described by
Morozov . If we are willing to simple pre and post processing
of input data, we can generalize this technique to become a
general purpose optical computer. This work has attracted
world wide attention and numerous citations. In addition,
both the neural network aspects and the digital optical
computing aspects are being pursued at multi-million dollar
levels by Nodal Systems Corporation. Again, the program has
done its job of stimulating an entire new area (Appendix C).
IV. OTHER DEVELOPMENTS

An important early paper of this program was on optical
Fredkin gates. Since the publication of that paper, this
work has diverged into two directions. First, there has been
considerable work in extending the two dimensional Fredkin
gate array to three dimensions. This appears to have some
real advantages over prior technology. Second, this work has
led (under other sponsorship) to the realization that optics
can accomplish what computer theorist have been dreaming of
for last 15 years: the performance of computing operations
at less than kT per operation. All of these matters are

discussed in substantial detail in appendix C.

»

H. E. Elion and V. N. Morozov, "Optoelectronic Switching
Systems in Telecommunications and Computers," Marcel
Dekker, N.Y. (1984).
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There was important early work in making optical pattern
recognition filters that not only had the invariance
properties which are being gladly sought but also the
property of being very easy to fabricate. This work has led
to considerable progress. We are now at the point where
immensely powerful optical pattern recognition mask can be
designed and fabricated in a very simple way.

Finally, there was some preliminary work on how these
concepts apply to optical neural networks.

These areas are expanded upon in Appendix D.

V. CONCLUSIONS

A variety of totally new concepts were introduced and
established as feasible during the course of this contract.
Each of them is a subject of intense continuing research
around the world. Many of them are now being pursued
commercially in America and will undoubtedly find their way
into the SDI effort of our country. In addition, the massive
commercial applications anticipated and funded as a result of
work reported here constitute an outstanding example of the
usefulness of the SDI program in creating new technology of

broad general usefulness for America.
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APPENDIX A

BIMODAL OPTICAL COMPUTERS

The first paper in this field (Appl. Opt. 25, 3128) was
completed before the beginning of this contract. It showed (as
described in the main text of our report) the severe limitations in
principle on Bimodal Optical Computer (BOC) convergence.

The first work under this contract (Opt. Eng. 26, 22) showed
that in many cases convergence occurred even when it could not
be guaranteed.

The two key papers showed how to get convergence for all
matrices (Appl. Opt. 26, 4906) and why this method works
(Linear and Multilinear Algebra 25, 215). The experimental
demonstration followed immediately (SPIE 936, 315).

Extending this to new algebra problems like eigen probiems
(SPIE 634, 86) and nonlinear algebra (SPIE 936, 309) increased
the utility.

The uitimate SDI application is jam resistant high speed radar
array data processing (Microwave and Optical Technology Letters
1, 236).




Bimodal optical computers

H. John Caulfield, John H. Gruninger, Jacques E. Ludman, K. Steiglitz, H. Rabitz, J. Gelfand, and E. Tsoni

Analog optical solutions of numerical problems tend to be fast, simple, and inaccurate. Digital optical or
electronic solutions to the same problems tend to be slower, harder, and more accurate. In circumstances
outlined here, hybrid analog-digital systems can be built which give the accuracy of digital solutions with
intermediate degrees of speed and simplicity. Because at any instant these processors are working in either
the analog or the digital mode, we call them bimodal optical computers.

. Introduction

While optical digital computers have been drawing
great attention,!-7 it is only in analog computation that
optics is known to excel over electronics. In this paper
we offer a limited exploration of a proposed link be-
tween these two fields of optics. That is, we will dis-
cuss hybrid optical numerical processors. We seek the
numerical accuracy of digital computing while still
retaining some of the speed and power advantages of
analog optics. To do this we must mix analog optics
with digital electronics (or electrooptics or optics) to
bootstrap the accuracy. We call this hybrid a bimodal
optical computer.

While some of these concepts are new to optics,
many are not new to science in general. Our purpose
in this paper is to call the attention of optics workers to
this area. We will present a general approach and
then specialize to one very specific and simple prob-
lem: Linear algebraic equations. The method is
clearly extendable to nonlinear problems and other
linear problems.

. Generic System

The generic system is comprised of three properly
interacting systems: an optical analog solver of the

H. J. Caulfield is with University of Alabama in Huntsville, Center
for Applied Optics, Huntsville, Alabama 35899; J. H. Gruninger is
with Aerodyne Research, Inc., 45 Manning Road, Billerica, Massa-
chusetts 01821; J. E. Ludman is with Rome Air Development Cen.
ter/ES, Hanscom AFB, Massachusetts 01731; E. Tsoni is with Uni-
versity of Crete, Department of Computer Science, Iraklion, Crete,
Greece; the other authors are with Princeton University, Princeton,
New Jersey 08544.
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basic problem; a memory; and an accurate (digital or
hybrid) calculator of the solution accuracy. The basic
cycle is as follows:

calculate an approximate solution with the optical
analog processor;

remember that solution to high accuracy;

calculate the solution accuracy with the accurate
computer;

repose the problem as an error reduction problem;

solve with an optical analog processor;

using the just-calculated improvement and the
stored prior solution, calculate and remember the im-
proved solution with the accurate computer;

calculate the solution accuracy with the accurate
computer;

if the solution is accurate enough, stop;

if not, recycle.

Clearly, the convergence condition is that the error
be reduced in each iteration. If this is the case, as we
will show, the optical analog processor no longer limits
solution accuracy.

In a purely digital system, the primary consumer of
space, weight, power, time, and cost would be the solv-
er (direct or iterative) of the problem solved by the
relatively small, low-weight, power conservative, fast,
and inexpensive optical analog processor. Thus there
is the potential for significant overall system improve-
ment using this hybrid approach.

There are two major forms the accurate processor
can take. First, it can be a special purpose, fast, inex-
pensive digital processor. For reasons which will soon
become evident, we call the hybrid system involving
such a processor a mathematical probiem solver. Sec-
ond, the accurate processor could be a physical system
interacting with the world. The problem is then iso-
morphic with the control theory. We call such a pro-
cessor a physical problem solver. With a mild effort,
the reader should become convinced that these two
problem solvers use the same mathematics.

pup—




. Accuracy Analysis

We will examine the bimodal optical computer
(BOC) with specific emphasis on linear algeb_ra as
might be used, for example, for numerical solution of
partial differential equations. The generic BOC
method was originally proposed by Thompson® some
time ago for iteratively improving the precision of me-
chanical devices which were used for the simultaneous
solution of linear equations. This method appears to
provide some considerable benefit for situations where
a low-accuracy but fast device is available for provid-
ing approximate solutions to partial differential equa-
tions. This can then be linked to a higher accuracy
device which is particularly well suited for forward
substitution of the approximate solution into the origi-
nal equation. The BOC iterative scheme, besides hav-
ing been proposed by Lord Kelvin, is a standard nu-
merical approach to the iterative solution of linear
systems and has solution of linear systems and has
been analyzed with respect to numerical round-off
error by Wilkinson” and Stewart® among others?. A
working model of this analog and digital bimodal elec-
trical computer has also been constructed by Kar-
plus.’® This work reexplores and extends the prior
work and incorporates modern linear and nonlinear
optical computer techniques.

We can summarize this idea in the following way.
Suppose we want to solve the n-dimensional linear
system of equations,

Ax=b. (1)

Here A is agiven matrix, bisagiven vector, and x is the
sought-after solution vector.

These problems are of great interest in their own
right. In addition such systems with high dimensions
arise when linear partial differential equations are
solved by the finite difference method. Many other
problems can be recast in this form. Suppose further
that we have built a discrete optical analog processor
for this problem which gives an approximate solution
that can be summarized with the equation

Ax=b, (2)

where A and b differ from A and b because of the
limited accuracy of the analog components. We now
have an approximate solution to our problem x, which
typically is accurate to a few percent. Next, we use a
digital electronic computer to form the residual

r=b-Ax 3

using the actual high-precision versions of A and b.
Notice that this step entails only substitution of the
current solution x in the modal equations, a relatively
fast operation for even a modest digital computer.
Subtracting Eq. (3) from Eq. (1) with digital electron-
ics, we can write

Ax-x)-r=0 (4)

call the current solution error

X-x = Ax, (5)
and write Eq. (4) as
AlAx) =r. (6)

We now have a problem of the same form as the origi-
nal with A being the same matrix, except with the
inhomogeneity term b replaced by the residual vector
r.

We now want to 1se the analog optical computer
again to estimate Ax and refine the solution x, but we
first scale the equations by an appropriate number S to
bring the voltages and currents back to the levels in the
first solution. Thus we solve

Ay=8r ()
and then use the estimate
Ax = y/S (8)
to refine the current solution to
x=x + Ax. 19)

This process can be iterated and in favorable condi-
tions will converge quickly to solutions of accuracy
only by the digital computer representation of A, b,
and the digital computation of Eq. (3). The descrip-
tion above for the iterative procedure was given in
terms of a linear equation; however, this concept may
also be applied to nonlinear systems and would take
advantage of the unique capacity of nonlinear analog
circuits for the solution of the nonlinear algebraic
equations of the discretized system. An analysis simi-
lar to the above treatment will again apply since the
equations become quasi-linear near the true solution.

We might call this a floating-point analog computa-
tion where the scaling parameter S acts as a radix,
varying from stage to stage with the size of the residu-
als in the equations. We note that this technique is
quite similar to the very standard iterative numerical
methods, such as Newton’s method. In addition, we
see that this technique marries analog and digital com-
puters in a most congenial way—we take advantage of
the speed and highly parallel nature of the analog
system as well as the memory and high precision of the
digital system in the external loop.

We have examined the stability and convergence
properties of the iteration process for this BOC. To
first order we can model the error caused by solving the
system on an analog computer (Eq. 2) by [Ref. 8, Corol-
lary (3.7)]

A+Erl=({I-PA"", (10)
where E is the error in the matrix due to the analog
representation. The norm of F is bounded by

RAVIEI/IAD)

| € ——— .
P < T AV AT

un

| - | is a matrix norm, and the condition number of A is
defined by

R{A) = jAIl -1ATY, (12
Substituting Eq. 10 into Eq. 6 gives

15 September 1986 / Vol. 25. No. 18 / APPLIED OPTICS 3129




Ko =X — 8, = x, — (I - F)A7!(b — Ax,). (13)

Letting x* = A-1b be the exact solution, we can rear-
range this to yield

Xy, ~x* = ~F(x, - x°), (14)
and taking the norms of both sides,
IEpey — x*I<IFY - lIx, — x*1. (15)

We thus have a sufficient condition for geom.etric
convergence of the process, namely, |F|| < 1, which is

satisfied if
IEIT. 1
k(A) [—IIAII] < X (16)

where k(A) is the condition number of A, and |E|| is the
error in the analog representation of the true matrix A.
Of course, when convergence takes place, the errors in
the digital computation may ultimately overtake the
effect of the analog error that is modeled here, al-
though the effects of analog noise may prevent that
kind of ultimate accuracy.

Since |E|l/||Al| may be ~0.01 for optical analog pro-
cessors, Eq. (16) requires that 2(A) <50. This is quite
restrictive but perhaps quite pessimistic. Simple
equilibration of rows may change A to A’ with

k(A « R(A).

Furthermore, a variety of other mathematical tricks
can be performed. We can replace Eq. (9) with

x =X + 0Ax an

and seek to use the convergence factor 9 to force con-
vergence in analogy with stochastic approximation.
We can replace Eq. (6) by

A+pqT(ax) =r, (18)

where q is chosen orthogonal to Ax and p is a free
vector so that A and pq7 are of the same dimensional-
ity as A. Calling

A” = A+pqT, (19)
we seek p values to make
kR(A") «< k(A). (20)

IV. Nonlinear Problems

Perhaps the most important payoff with BOCs may
be associated with the solution of nonlinear problems.
Many physical phenomena result in nonlinear differ-
ential or ultimat*ely algebraic equations for solution.
Such problems are notoriously difficult to treat by
conventional numerical methods on digital computers.
This comment follows since the algorithms will involve
linearization or perhaps iteration with convergence
being slow or perhaps nonexistent in highly nonlinear
problems. A more suitable approach would be based
on directly building the nonlinear behavior into the
calculation process. It appears possible to construct
hybrid machines based on this logic following lines
parallel to that discussed in Sec. III. The key to this
approach rests on the fact that nonlinear electronic or
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optical elements can be readily made and integrated
together into an overall nonlinear computer.

As a simple example of a nonlinear problem we may
consider the search for roots of a polynominal p(x) in
the real variable x. It is straightforward to use optical
methods to evaluate polynomials via Horner’s rule.
Optical polynomial evaluation can be analog!! or digi-
tal. Some tricks to accommodate dynamic range, al-
low root searching by scanning, extend the range of
problems addressed, etc. are given in the latter refer-
ence. Rootsearching for real roots simply by scanning
through x and watching for p(x) = 0 conditions is
straightforward and fast. It is, however, not likely to
be highly accurate. Suppose we identify an approxi-
mate real root xo. We can then evaluate p(x) and

py(x) = p(x) = plxy)

digitally. Assuming we are now close to the true root,
we can now change the scale of both p; and x to gain
sensitivity. We might substitute y = 10x and ¢, =
10p: and then search q,(y) as before. This leads to a
better approximation x, as can be verified by digital
evaluation of p(x;). Accuracy is limited by the condi-
tion number of the polynomial because that limits the
accuracy of the polynomial evaluation. Other similar
examples can be found, and a general set of logic can be
set forth as discussed below.

A nonlinear computer of the type discussed in the
first paragraph could likely be of limited accuracy but
capable of achieving an extremely rapid solution with-
out the introduction of artificial linearization or itera-
tion algorithms. The machine could be used alone or
incorporated into an overall hybrid device along the
lines discussed in Sec. III and the polynomial root
searching example. This would entail introducing a
high-accuracy digital computer as a means of monitor-
ing residual errors. Updated corrections to the origi-
nal fully nonlinear solution could be achieved by again
using the nonlinear solution if it is close enough to the
true answer that the nonlinear computer effectively
operates in the linear mode after the first cycle. Asan
alternative it would be possible to construct an addi-
tional linearized version of the machine for the accura-
cy updates on the solution. These approaches may be
theoretically modeled as well as demonstrated in the
laboratory, and we plan to carry out such studies in the
future.

V. Conclusions

Analog optics, when adequate for a task, is usually
superior in speed, size, power consumption, and cost to
all competitors. What we have suggested here is a
means to extend the set of situations for which analog
optics is adequate. Many studies remain to be per-
formed on both algorithms and hardware. Neverthe-
less, the general concept of a hybrid system appears to
be extremely promising.

Work sponsored primarily by the U.S. Army Re-
search Office under contract DAAG-29-84-C-0026.
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Patter continued rom pege 3121
Optical monitoring of weld penetration

A system is being developed to monitor weld penetration optically and
produce a signal for controlling an arc welder. The system is aimed at
automatic welders, robot welders in particular. Made from smail, low-cost
components and utilizing optical fibers to conduct the signals, the system is
immune to the electromagnetic interference that is common in industrial
environments.

The monitor directs collimated light from a small diode laser at the molten

| of metal bene- - the arc (see Fig. 16). A filter intercepts the reflected

eam to suppress . - raneous light, including light from the welding arc. A

position-sensitive detector at a distance from the pool intercepts the beam
reflected by the pool.

[f the weld penetrates the wurkpiece completely, the curvature of the pool

Beam-Posilion Weiding
Sensor Rod
Coltimates
o 2 Light Source
oy P T
Consolier’ j- e Puaet. -
Otoptasamtens- "

Meotel Being Werded

Fig. 16. Bounding off the meniscus of a pool of moiten metal, a laser

beam impinges on a position-sensitive photodetector. The beam

diameter can be adjusted for the width of the weld. Optical filters
screen out the light from the arc.
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surface suddenly changes. Thlg causes a sudden deflection of the reflected
light beam, and consequently a dlsp_lacemem of the beam spot on the detector.
Signal-processing circuitry determines the amplitude and rate of beam dis-
placement to detect penetration and to generate control signals for the robot
to regulate welding parameters.

The monitor is insensitive to changes in weld current, welder ;poed. and the
thermal properties of the welded metal except as they affect weld penetration.
The monitoring principle is adaptabie to other types of welding, including
tungsten/inert-gas, laser, and electron-beam techniques.

This work was done by Jonathan Maram of Rockwell International Corp. for
Marshail Space Flight Center. Refer to MFS-29107.

High-flux atomic-oxygen source

A proposed apparatus can generats high fluxes (about 10!3 atoms/cm?-s) of
ground state (3;) ox);;en atoms. The kinetic energy would be variabie in the
range of 3-10 eV, and the beam would be free of contaminants, such as ions,
metastable 'S or !D oxygen atoms, or other neutral species. Designed specifi-
cally to study the degradation of materials and spacecraft glow phenomena in
low earth orbits, this oxygen-atom beam source could be used to study gas-
phase collision phenomena involving energetic oxygen atoms.

In the proposed source (see Fig. 17) electrons are generated at a heated
filament of LaBsor W. Bias voitages V| and V; accelerate the electrons to the
proper energy (6.5 V) to maximize the dissociative attachment of a beam of O,
gas (that is, the separation of O, molecules into O~ ions). A solenoidai
magnetic field provided by superconducting coils contains the electrons e and
the ions O~ produced in the dissociative-attachment process.

/
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Fig. 17. Accelerated electrons strike a beam of O, gas in the disso-
ciative-attachment region, producing O~ ions. The O~ ions are
accelerated to the desired final energy and pass through the photo-
detachment region to form O(3P) atoms. These pass between elec-

tric field plates to remove O~ and e and then strike the target.
comusd on page 3268
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Speed and convergence of bimodal optical computers
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Abstract. A bimodal optical computer (BOC) for solving a system of linear
equations is presented. The BOC can achieve accuracies comparabie to those of
the digital computer, and its speed is far superior in solving a system of linear
equations. The advantage in speed increases with the size of the matrix. The
problem of the convergence of the solution using the BOC is investigated. It is
found that by using a BOC with an error as high as 50% in the matrix’s optical
mask and 1% in the electro-optical devices, convergence is achieved for
matrices with condition numbers of 25. The effect of the condition number on
the convergence of the soiution is investigated. it is found that matrices with
large condition numbers converge very slowly. Convergence for matrices with
condition numbers higher than 250 was achieved. A means of impraving the

Huntsville, Alabama 35899

condition number of a matrix is also introduced.
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1. INTRODUCTION

Analog optics is very attractive for signal processing and
computing because of its ability to process two-dimensional
data in parallel very rapidly. Unfortunately, this high speed
parallel processing achieves only low accuracy because of the
nature of the analog processing, especially in optical systems,
where accuracy problems arise from errors in writing and
reading the signals using the 1/ O electro-optical devices. [n
contrast, digital electronics is much slower but much more
accurate. A compromise (hybrid) system, the bimodal optical
computer, appears to be intermediate in both speed and accu-
racy. This method. introduced by Caulfield et al.! and de-
scribed in Sec. 2, combines the high speed and parallelism of
analog optics with the high accuracy of digital electronics

Invited Paper ON-107 received June 10. 1986; revised manuscript received
Sept. 17. 1986; accepted for publication Sept. 17, 1986. received by Managing
Editor Oct. |3, 1986.

© (987 Society of Photo-Optical lnstrumentation Engineers.
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using Lord Keivin's iterative method.? In Sec. 3 we present a
numerical analysis for the convergence of the solution of a
system of linear equations. In Sec. 4 we present computer
simulations of the BOC to study the dependence of the solu-
tion convergence on the condition number of the matrix and
on the errors in representing the 1, O data in the optical
system. In Sec. 5 we compare the time required to solve a
system of linear equations using the BOC to that required by
the digital computer. [n Sec. 6 a means of reducing the condi-
tion number of a matrix is examined. and in Sec. 7 conclu-
sions and final remarks are drawn.

2. BIMODAL OPTICAL COMPUTER ALGORITHM
The bimodal optical computer works in the following manner
for solving a system of linear equations:

Ax = b . (0

where Aisan n X nmatrixand xand bare n X | vectors. A and
b are given. The x is unknown and is computed as follows:

(a) Use the optical analog processor to compute an approx-
imate solution x4 of the linear system. The subscript zeros
indicate inaccuracies in the optics and electronics, so the
system of equations solved by the optical analog processor is

Aok = by . )
(b) Store the solution x, to a high accuracy with the digital
computer. Use a dedicated digita! processor to caiculate the

residue

r=b—Ax, = Alx ~x) = Adx . (3)
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Fig. 1. System layout of the bimodal optical computer.

(c) Use the optical analog processor to solve the new linear
system for Ax:

Agy = sty . (4)

where y = sAx and s is a "radix,” or scale factor, chosen to
make good usec of the dynamic range of the system.
(d) Use the digital processor to refine the solution x; for x;:

X, = X, + Ax . ()]

If the refined solution x, is accurate enough, terminate the
iterations. Otherwise, return to (b), (c¢). and (d) for a more
refined solution.

3. CONVERGENCE OF THE SOLUTION

Figure 1 is a block diagram of the BOC. The solution of the
linear algebraic equation will be computed optically using the
method introduced by Cheng and Caulfield.’ The heart of the
processor is the fully parallel Stanford matrix-vector multi-
plier ¢ Input lights representing x components are spread
vertically onto the columns of an attenuating mask represent-
ing A. Row sums of the transmitted light are detected to give
components of the output vector z. For all k, we allow

& =b —z (6)

todrive x,. Here, z, isa component of the calculated z = Ax.

The convergence of the solution of the problem depends on
two factors: the convergence of the solution of the system
given in Eq. (2) by the analog processor and the convergence
of the solution for the system given by Eq. (1) by the optical-
hybrid processor (BOC). The convergence of the solution of
Eq. (2) is discussed by Cheng and Caulfield. They report that
if the matrix is a positive definite (a matrix with positive
cigenvalues), then the solution will converge regardless of the
size of the matrix. This simply applies to step (a) of the
procedure outlined in Sec. 2.

We turn next to the total process, presenting a numerical
analysis for the convergence of the solution and its depen-
dence on the condition number of the matrix. The condition
number of the matrix A is defined as

x(A) = A} AT )]

where the double bars denote the norm of the matnx. If we
consider the Euclidean norm, then
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Fig. 2. Spectral radius S(M) as a function of the standard deviation
of the error matrix.
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x(A) = Al I1AT, 2 (8)

min

where | Al,,, and [ Al are the maximum and minimum
eigenvalues of the matrix A. The equality is satisfied if Aisa
symmetric positive definite matrix. The condition numberisa
measure of the accuracy of the Ax = b solutions. The larger
the condition number, the less accurate the result achieved
with any fixed-accuracy computer.

From Eq. (2) the solution x, is given by

Xp = Byb, . (9)

where B, = (A,;)”' .andif x, is the solution after the ith itera-
tion, then

X+ = xt+Ax . 1o

where Ax is given by

Ax = Byr . (y
Therefore,
X, ., = (I - B,A)x; + Byb . (12)

where | is the identity matrix. The condition for the conver-
gence of the solution given in Eq. (12) is that?

Sy =1, (13)

where M = | — B,A and S(M) is the spectral radius of the
matrix M, which is equal to the absolute value of the maxi-
mum eigenvalue A .. (M) of the matrix M. Representing the
matrix A with an optical mask (a2 photographic film or an
SLM) is the major source of the error. We need to examine
how accurate this mask should be to achieve solution conver-
gence. Let us represent the mask's matrix by

Ay = A+E, (14)

where E isan error matrix. For simuiations, E is generated by
a Gaussian random number generator with a standard devia-
tion og. In Fig 2 the spectral radius S(M) of the matrix M is
plotted versus the standard deviation og of the error matrix
for a matrix A with a maximum coefficient of unity (any
matrix can be normalized to take this form). ltisclear that the

OPTICAL ENGINEERING / January 1987 / Vol. 26 No. 1 / 023
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spectral radius increases as gg increases, which slows the rate
of convergence. The interesting result is that for this particular
matrix, convergence is achieved even with an error matrix of

>50%.

4. COMPUTER SIMULATIONS

In this section we present a computer simulation, using the
BOC, of the procedure outlined in Sec. 2. In the simulation we
consider matrix masks with different accuracies. We also
consider the accuracy of the LEDs and photodiodes to be 1%
in writing and reading the data. Here, we are interested in
finding the number of iterations required for the solution to
converge to a preset accuracy.

4.1. Condition number effects

The condition number is a measure of the sensitivity of the
solution of Eq. (1) to any variations. In the first part of the
simulation, we tested the condition number and its sensitivity
to the error matrix of the optical mask. In Fig. 3 the condition
number of the mask’s matrix is plotted as a function of the
standard deviation of the error matrix, og. The maximum
coefficient of the matrix A is kept equal to unity. In Fig. 3(a)
we consider a matrix with a condition number equal to 60.
This curve shows that with the increase of the error in repre-
senting the matrix by an optical mask, the condition number
improves. except for a very few points where the error values
caused the condition number to increase. In Fig. 3(b) a matrix
with y(A) = 300 is considered. Here, for the entire range of
og. the condition number of the mask’s matrix is much smaller
than 300. This interesting result shows that if we start with an
ill-<conditioned matrix, its mask can be well-conditioned. This
will help in solving problems in which the matrix is
ill-conditioned.

In testing the effects of the condition number on the con-
vergence of the solution of the system of linear equations, we
used the BOC to solve the system with a 16 bit resolution. The
matrices were generated randomly using Gaussian statistics.
An error of 1% of the maximum coefficient of the matrix was
added to generate the mask. An error of 1% also was used in
reading X, and in writing by. In each case we computed the
condition number of the generated mask's matrix. The
number of iterations required for convergence of the solution
was determined for each case. The iterations were terminated
if they exceeded 25 and also if Ir,|/Ir, _ || > 1, which is the
condition of a solution divergence. The number of iterations
required for convergence of the solution with 16 bit accuracy
is plotted as a function of the condition number of the mask’s
matrix in Fig. 4. In these calculated data points it is quite
evident that the number of iterations increases with the
increase of the condition number, which is a predicted result.¢
The increase of the condition number decreases the accuracy
of the solution. so more iterations are needed to achieve the
desired accuracy. From Fig. 4 convergence was achieved for
condition numbers as high as 230, and even with x(A) > 1000
in our experiments, convergence was achieved for some cases.

4.2. Effect of the mask’s error

The major limiting factor on the speed of convergence is the
accuracy with which we can represent the matrix with an
attenuating optical mask. In the present state of the art.
accuracies of 3 to 5% are achievable. We would like to see how
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Fig. 3. Condition number x(A + E) of the mask's matrix as a function
of the standard deviation of the error matrix for (a) x(A} = 80 and
(b} x (A) = 300.
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Fig. 4. Number of iterations as a function of the condition number of
a randomly generated matrix A.

this will affect the speed of convergence of the solution. In this
simulation we started with a matrix with a condition number
x(A) = 24. Error matrices E were generated using Gaussian
statistics with coefficients ranging between | and 55% of the
maximum coefficient of the matrix A. The optical masks were
generated by adding A to E. These masks were then used in the
BOC to solve the system of linear equations. The number of
iterations required to achieve the soilution with the desired
accuracy (16 bit resolution) was computed. In Fig. 5 the
number of iterations is plotted as a function of the standard
deviation of the error matrix. gg. The number of iterations
increases with the increase of the error in the mask. as
expected.® However, even with errors as high as 55¢¢ in
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of the standard deviation of the error matrix.

representing the matrix A with an optical mask, convergence
is stil] retained. Of course. a larger number of iterations is
required. This result is very important. It means that even with
optics that are not so accurate. we can realize this optical
computer that solves this class of linear algebra problems with
a high accuracy and speed.

Other observations recorded in this simulation need to be
highlighted. First, the condition number of the mask's matrix
A + Eiscomputed for the set of error matrices E. In Fig. 6 the
condition number of the mask’s matrix, x(A + E), is plotted
as a function of the error g¢. The condition number of the
mask decreases with the increase of the error almost exponen-
tially, which is surprising since it appears to contradict the
result shown in Fig. 4. We showed there that for large condi-
tion numbers we need more iterations, while here more itera-
tions are needed for small x(Ag). But, indeed, it is not a
contradiction. Here, although these matrices have low condi-
tion numbers, they are very different from the matrix A given
by the system of linear equations because of the large error
involved, which makes the convergence very slow.

Second, we found in the resuits of the simulation that if the
condition number of the mask increases for a large error, the
solution will diverge, because the solution obtained in each
iteration has high inaccuracies. This, in return, makes the
convergence cither very slow or not achievable.

Finally, we note the relationship between the spectral
radius S(M) of the matrix M given by Eq.(13)and the number
of iterations. We computed S(M) for each mask of Fig. 5. The
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number of iterations required tor a solution with an error ¢ is
given by’

log(e)
where R{M) is the asymptotic rate of convergence.
R(M) = — log[S(M)] . (16)

[n Fig. 7 the number of iterations required to get a solution
with a 16 bitaccuracy (¢ = '%'®)is plotted versus the spectral
radius S(M). Equation (15) is plotted as a continuous line.
while the data computed in the simulation are plotted as
squares. The theoretical and experimental data agree well. As
S(M) increases. the number of iterations increases. and as
S(M) approaches unity, the convergence becomes very slow.
For values of S(M) larger than unity the solution will diverge.

4.3. Rate of convergence

So far we have considered solutions with a 16 bit accuracy. We
are interested in determining how many more iterations are
needed to get a higher accuracy of the solution. In Fig. 8 the
natural logarithm of the maximum component of the residue
Ir! is plotted as a function of the number of iterations for a set
of matrices with different condition numbers, x(A) = 13,26,
42, and 65. The smaller the condition number. the higher the
accuracy achieved in fewer iterations. For the condition
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number 13, one iteration can increase the accuracy by as many
as § bits.

5. COMPUTATIONAL SPEED ANALYSIS

To get some quantitative values for the speed of this process
compared to that of the digital computer, we calculate the
number of operations required by each method, then multiply
the result by the time required for each operation. We con-
sider the total number of operations regardless of whether
they are multiplications or additions.

Let us consider an nXn matrix A. The time required for
one iteration of the procedure outlined in Sec. 2, T, is given by

To = T, +2n(a + DTy, (7

where T ,, is the time required to soive Agxy, = by by analog
optics and Tp,, is the time required for one digital operation.
Therefore, the time required to do [ iterations with the BOC is

T, = [T + 2n(n + DTy, . (18)

while the time required by the digital computer to solve the
system of linear equations using Cholesky's method’ in I,
iterations is

n)
To =(T +20) I To, - (19)

The condition we need to satisfy in order to have an advantage
in time in using the BOC over the digital computer is

T, KT, . (20

Therefore, for a clear advantage of the BOC, from Egs. (18) to
(20) we want

3

L[Ta + 2000 + DT,,) << (5 + 20) 15Ty, (21)
or

n)
[Ty, + 2000 + DT ] << (—3- + 2n1) Tor (22)

where k = ly; I. Then, Eq. (22) can be rewritten in the form

313) + 2021 ~ %) — T
(n’3) n( x)—2nx 1p) s> 1 (23)
X Ta

The advantage in speed in using the BOC over the digital
computer is obvious from Eq. (23), and it increases as the size
of the matrix nincreases. To examine this condition carefully,
let us rewrite Eq. (23) in the form

ApA >> 1, (24)
where
) 2 —_ —
_ 2((n’- 6) + n’(1 — «) — n«} (25)
4 x
TDl
A = . (26)
YT

026 / OPTICAL ENGINEERING / January 1987 / Vol. 26 No. 1

240 - ?
o 20 =1
z 200 -~ ,
E4 180 « ‘r x =10
€
u—;“G- 1
4 % 04 ’
¢
20
g : '® » L x=20
5 T 00 /
g
a0 -
] f /

0 40 80 120 N 200 240 280
Size of matrix, n

Fig. 9. Operation advantage in Eq. (25} as a function of the size of
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Here, A, is an “inherent advantage.” A single analog opera-
tion is much faster than a digital one. The entire Ax = b
solution will be slower than a single digital operation, but the
analog Ax = bsolver works at speeds independgnt of n. On
the other hand, T, is operation dependent. It includes the
time required for performing the operation and storing ;nd
retrieving the data from computer memory, which is time
consuming, especially as n increases, .

The factor A, is a problem-rela.ed advantage. Itis a func-
tion of the size of the matrix, n, and the ratio of the iterations.
«. The operationadvantage A, is plotted in Fig.9asa function
of nand «. [tis clear that A, increases rapidly as n increases.
even if the number of iterations in the BOC is much larger
than in the digital processor, while in reality the number of
iterations of the two processes will be approximately the same
for well-conditioned matrices.

6. CONDITION NUMBER REDUCTION

As mentioned earlier.,the condition number is an indication of
how accurate the solution of the system of linear equations
will be. The larger the condition number x{A). the more
iterations are needed for solution convergence. One way of
reducing the condition number of a given matrix is to normai-
ize the matrix in the following manner:

af = ~ T e N 1= l'z""n * (‘,7)
il (afl +a, +. . ... +a, )’ “

where thea, are the coefficients of the matrix Aand a;, are the
coefficients of the normalized matrix A,. The ratio of the
condition number of the normalized matrix A, x(A,). to that
of the original matrix, x(A), is plotted in Fig. 10. Itis clear that
the normalized matrix has a smaller condition number than
the original matrix by a factor of approximately 0.8. We
expect this to decrease the number of iterations substantially.

7. CONCLUSIONS

The speed, accuracy. and convergence of the bimodal optical
computer are discussed. The BOC is similar to the digital
computer in its accuracy but is faster in solving a system of
linear equations than the digital computer. The speed advan-
tage increases with the increase of the size of the matrix. which
makes it a more attractive computer. The convergence of the
solution as a function of the condition number and the error in
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the 1/ O devices is also analyzed. [t is found that solutions
converge even for about 50% errors in the representation of
the matrix by an optical mask. Although this error will reduce
the speed, it will not lead to a sacrifice in the accuracy of the
solution. Thus, even with today’s inaccurate analog optics, we
can have a powerful computer to solve this class of linear
algebra problems. Normalization of the matrix will reduce its
condition number, which will lead to a faster convergence.
The BOC is capable of solving other problems, both linear
and nonlinear. in addition to the system represented by Eq. (1).
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Beginning with Lord Kelvin! and continuing through re-
cent work of ours,-? researchers have been interested in ways
to use a fast low-accuracy processor and a slow high-accuracy
processor together with intermediate but high speed. We
showed earlier? that to guarantee convergence with a fast
processor of accuracy ¢ (expressed as rms relative error) on an
Ax = b problem in which the condition number is x(A), the
requirement (in approximate form) is

x(A) e <y, (1)

For analog optical algebra processors, ¢ = Y5 (2%) is excel-
lent. This means we may expect some failures of the process
for x(A) > 25. Since many matrices have much higher
condition numbers, this is a severe restriction. In subse-
quent publications’-5 we showed that convergence was
achievable for many matrices with x(A) > 1/(2¢) and that A
can be preconditioned (rearranged without changing its
meaning) to improve x(A). These steps brought the result-
ing bimodal optical computer (BOC) to the point where it
was practical for some real but restricted situations.

Our goals in this Communication are twofold. First, we
wish to remove some restrictions on the condition number
and thus achieve convergence for a wide range of problems.
Second, we wish to remove the restriction we imposed on the
Ax = b solver by limiting its convergence to only positive
definite matrix A and thus guarantee convergence for other
matrices by modifying the algorithm.

Although the BOC can be applied to all linear algebra
problems we pick the general Ax = b problem for illustration.
We review here the basic ideas:

(1) Solve Ax = b optically to get x,.

(2) With specialized digital processor, evaluate to high
accuracy

ry= b — Ax,. (2)

(3) Normalize ry to keep solutions in range.
(4) Solve optically

4906 APPLIED OPTICS / Vol. 26, No. 23 / 1December 1987
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Af{Axo) = 1. 3

(5) Evaluate digitally
X, = Xy + AX, 4)
r,=b- Ax, t3)

(6) If |r,]| is small enough, stop. Otherwise, go to (3) and
recycle.

In the optical steps, replace A with a new matrix A, derived
from A by adding noise to it.

Ag=A+E, (6)

where E is an error matrix generated using Gaussian statis-
tics with a standard deviation og. The new matrix will have
a much better condition number, especially for an ill-condi-
tioned starting matrix A. The digital correction steps keep
the solution headed toward Ax = b not Ayx = b. In analog
processors adding E is automatic because of system noise.
We treat o hereafter as the standard deviation of system
noise.

The method proved capable of solving systems of linear
equations with a wide range of condition numbers. The
convergence to the solution is very rapid for small condition
numbers and very large condition numbers (near singular
and singular) but not as rapid in intermediate values of
condition numbers. And it works best for singular, underde-
termined, or overdetermined systems.

In Table I the number of iterations .V, required for a
convergence to a solution with 16-bit accuracy is tabulated as
a function of the error involved in the calculations. These
results are obtained using a computer simulation of the
bimodal optical computer. The errors considered in the
calculation are defined as follows:
og = the standard deviation of the error matrix E;

o, = the standard deviation of the error in writing the vector
b, and
a, = the standard deviation in reading x.

The results in Table I are for a singular matrix A. The
matrices considered here are 10 X 10 and have rank of 9 and
1, respectively. When an error is added to the vector b the
solution diverges, but by adding an error matrix E to A the
solution converges very rapidly, as shown in the table. This
is true for different values of the error g,. The technique
does work even with a processor with errors larger than that
shown in Table [. Also we have considered a set of Hilbert
matrices,’ which are very ill-conditioned, and their condition
number increases very rapidly by the increase of size. These
are used as test matrices for our new technique which was
able to achieve convergence very rapidly, especially when
there are errors in the vector b.

Thus this technique makes the solution converge for a
system of equations which cannot be solved with ordinary
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Table |. Convergence Behavior of 10 X 10 Matrices of Ranks 9 and 1 for

Various Additive Errors
10 X 10 10 X 10
Rank = 9 Rank = |
o€ b s Ni o deall/led Ny e/l
0 0 0 1 1
0 1.E-6 0 4 0.5585 D 51E+2%
1LE6 1.E-8 0 1 3.48-6 1 8.9E -7
0 LE-6 L|l.E-6 D 2.3273 D 67E+28
1.LE-6 1E-6 LE-6 1 9.24-6 1 12E-5
0o 001 0 D 1000 D 24E+64
1.E-6 0.01 0 4 2.2E-2 2 29E -3
0 001 001 D 11953 D 12E+31
1LE-6 001 0.01 9 2.1E-1 5 6.9E -2
LE-4 001 0.01 7 1.7E-1 4 36E -3
0.01 0.01 0.01 8 2.5E-1 S 13E-1
0.05 0.01 0.01 11 2.4E-1 4 20E -1
0.10 0.01 0.01 18 7.2E-1 4 8.6E -2

N, is the number of iterations required to achieve fry;l = 0 to
within 16 bits. The ratio of |rsfi/llr,]| gives another measure of
convergence {or divergence indicated by D) rate. We have used the
infinity norm for convenience.

techniques. We have tested this technique for matrices with
sizes IV up to 12 X 12 and with different ranks from (N - 1) to
1. For all these cases it does work with a high speed of
convergence.

In previous papers we showed that the parallel analog
processor proposed for the BOC is capable of solving only
systems of linear equation with positive definite matrices.
Here we will -ase this restriction. In general the matrix A
has complex cigenvalues. ([f the matrix A is muitiplied by
the Hermetian matrix AH, the matrix AHA will have a non-
negative eigenvalue. Now multiply the system Ax = b by
AY; then

AHAx = AHb, (¥h]

Equation (7) gives a new system of linear equation with a
non-negative eigenvalue. In practice adding E to AHA re-
sults in a positive definite matrix. Thus general systems can

be solved in this manor. Replacing A by AHA increases the
condition number (squaring at the most) but does not pre-
vent convergence to an accurate solution of Eq. (7). Equa-
tion (7) is, of course, not well posed as Ax = b, Therefore, we
must use the residual of Eq. (2) not the residual of Eq. (7).

With this method most problems behave as simple prob-
lems: they converge and converge rapidly. This has been
applied successfully to Ax = b problems, which are deter-
mined, underdetermined (linear programming), or overde-
termined.

The method is purely algebraic and is, therefore, simply an
improved approach to some numerical algebra problems.
The fact that it is suited for BOC use is an independent fact.

If we can achieve fast convergence almost independently
of condition number, the first practical application may be to
phased array antennas where the phasing problems are lin-
ear algebra and the primary difficulty is the presence of
jammers: malicious means to increase the condition num-

ber.

This research was supported by the Innovative Science
and Technology Office of the Strategic Defense Initiative
Organization, administered through the Office of Naval Re-
search under contract N00014-86-K-0591.
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Let Ax = b be a consistent linear system with 4 an n x n complex matrix. Suppose that G is a nonsingular
n x n complex matrix for which 4 + G is nonsingular and zero is not a multipie root of the minimum
polynomial of G~ 'A4. It 1s shown that there exists a positive real number p such that whenever ; is a
compiex number with 0 <|;| < p the sequence xq, x,, x,. .. . converges to a solution of Ax = b for every
initial vector xo, where (A + ;G)x, = yGx;_, +bfori1=1,2, ... . Related questions are also considered.

In this note theoretical results are presented that heip explain the observed behavior
of a standard iterative process for solving a linear system of equations.

Analog optics is very attractive for performing matrix computations because of its
ability to process two-dimensional data in parallel very rapidly [5]. Unfortunately,
this high speed processing achieves only low accuracy. In contrast, digital electronic
processors are slower but much more accurate. [t was recently suggested [4] that
linear systems can be solved iteratively by a method that combines the speed of
analog optics with the accuracy of digital electronics. The proposed method is based
on the usual iterative refinement of approximate solutions of linear systems (for
example, see [6]). To solve a system Ax =b, where 4 is an n x n matrix. use an
optical analog processor to find an approximate solution ¢ of Ax = b.

1. Use a digital electronic processor to compute r = b — A%,

2. Use the optical processor to find an approximate solution é to the system Ae =r.

3. Use the digital processor to refine the approximate solution of Ax =5 to

X =% +¢&. If X is accurate enough, terminate the iterations; otherwise, set £ = %
and retumn to step 1. :

Due to inaccuracies in writing and reading the signals using electro-optical devices,
the optical processor solution % of Ax = b is the exact solution of a perturbed system
(A + E)x = b, where we assume that the matrix A + E is nonsingular. In the current
state of the art in optical processing, the magnitudes of the entries of the error matrix
E may be from three to five percent of the maximum magnitude of the entries of A.

® This work was supported by the Innovative Science and Technology Office of the Strategic
Defense [nitiative Organizauon. admunistered through the Office of Naval Research under contract
N00014-86-K-0591.
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In numerical experimentation on a digital electronic computer, the error matrices
were randomly generated [1], [2]. In extensive experiments, it was found that A + E
would be nonsingular and that the approximate solutions converged to a solution
of Ax =b. Application of the method can be viewed as a preconditioning of the
system. It was applied to systems for which 4 was nonsingular with condition number
varying from small to quite large [1], [4]. Later consistent systems with singular
coefficient matrices were solved, and it was found that convergence to a solution of
Ax = b was in practice even better than for 4 nonsingular (2].

When the method is applied. a sequence X,. X,. X,. ... of approximate solutions
to the consistent system Ax = b are generated where

(A+E)x;=Ex,_, + b, i=12....

It is well known (e.g. see [3]) that for nonsingular 4 + E iteration converges 10 a
solution of Ax = b for every initial vector x, if and only if lim ((4 + E)™'E)"™ exists.

If this limit exists, for n x n complex matrices A and E, then we say that E is an
acceptable error matrix for A. Let H, = (h;;} be the n x n matrix with k., =1 for
i=1,2,...,n—1, and all other entrjes zero.

THEOREM | Let A and G be n x ncomplex matrices with G and 4 + G nonsingular.

(@) If zero is not a multiple root of the minimum polynomial of G~ 'A, then there
exists a positive real number p such that, for all complex numbers ; with
0 <|y| < p, E=7G is an acceptable error matrix for A.

(b) If there exists a nonzero complex number y such that E = ;G is an acceptable
error matrix for A, then zero is not a multiple root of the minimum polynomial

of G™'A.
Proof Let A have rank r. and suppose that zero is not a multiple root of the

minimum polynomial of G~ 'A4. Then there exist a nonsingular n x n matrix P and
a nonsingular r x r matrix Q such that

P"G"AP=[O 0]»
0 @Q
Let
p = (min{|4|: 4 is an eigenvalue of Q})/2.

Then p>0. Let 7 be a complex number with 0<|y| <p. It follows that ;G is
nonsingular and

I 0
P UG 'A+ P = .
((GG)™ A +1) [O I+-,"‘Q]

Let 4 be an cigenvalue of / +77'Q. Then 4 =1 + y/y for some eigenvalue u of Q.
Thus |4} > |u/7} =1 >2 ~ 1 = . Therefore, [ +7~'Q is nonsingular and (4| < 1 for
cach eigenvalue 4 of ([ +77'Q)~". It then follows that (yG)~'4 + [ is nonsingular and
that lim (((;G)~'A4 + [)~')™ exists. Moreover, since (yG) ™ '4 + [ =(;G)™ (4 +7G),

m-x
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we see that 4 + ;G is also nonsingular with
(A+76) 756G =G A+ G =((;G) A+ N~

Thus E = ;G is an acceptable error matrix for A. Therefore part (a) holds.

Now suppose that there exists a nonzero complex number ; such that £ =G is
an acceptable error matrix for 4, and that zero is a root of the minimum polynomial
of G™'A4 of multiplicity k, where k > |. From the Jordan canonical form of G~ A,
we see that there exists a nonsingular matrix P such that

P“G"AP:[H" 0]

0 @
where Q is some (n — k) x (n — k) matrix. It follows that
I+ 'H) ! 0 ]
-t “G)~ 'GP = )
P (A+/G) I [ O ”+7—1Q)-l

Since k>1, we see that lim (([+7 'H) ') does not exist, and thus

lim ((4 +7G)™'yG)™ does not exist. This contradiction establishes part (b).

m-x

If A is given and E is randomly generated. one would expect E and 4 + E 10 be
nonsingular, and that zero would not be a multiple root of the minimum polynomial
of E™'A. Therefore, if the entries of E are chosen with magnitudes fairly small in
comparison with the maximum magnitude of the entries of 4, Theorem | indicates
that E will probably be an acceptable error matrix for 4.

Part (a) of Theorem 1 clearly implies the following,

COROLLARY 2 Let A and G be nonsingular n x n complex matrices for which 4 + G
is nonsingular. Then there exists a positive real number p such that, for all complex
numbers y with 0 < |y| < p. E = 7G is an acceptable error matrix for A.

For nonzero singular matrices 4 we have the following.

THEOREM 3 Let A be an n x n complex matrix of rank r where 0 < r < n. Then there
exists a nonsingular n x n complex matrix G such that A + G is nonsingular and for
each nonzero complex number v, G is not an acceptable error matrix for A.

Proof Letd=n~r,letn,,n,,....n,bepositive integers withn, +n, + - - - +n,=n,
and define a block-diagonal matrix J by letting
J =diag(H,,.-H,,.. ... H,].

Since 4 and J have the same rank, there exist nonsingular matrices P and Q such
that QAP =J. Let G=(PQ)~', and let 7 be nonzero complex number. It follows

that A + 7G is nonsingular with
(A+7G) G =((7G) (A +7G) ' =P +77 ")) 'P7".

Sincen; > 1forsomei=1,2,...,d, weseethat lim ((/ +y~'H,) ')" does not exist,

m-x

and thus E =G is not an acceptable error matrix for A.
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The acceptable error matrices that we have presented for a given matrix 4 wouid
appear to have entries with small magnitudes in comparison with the maximum
magnitude of the entries of A. However. the next two theorems show that each n x n
complex matrix A has acceptable error matrices with entries of arbitrarily large
magnitude. For nonsingular A. it is easy to prove the following.

THEOREM 4 Let A be a nonsingular complex matrix. If  is any complex number with
positive real part, then E =7 A is an acceptable error matrix for A.

Now let K, = (k;;) be the n x n matrix with k, =1 and all other entries zero. For
nonzero scalars ;. we see that the matrix H, + yK,, 1s nonsingular with inverse equal
to the transpose of H, + ;"' K,. We shall use this in proving the following.

THEOREM S Let A be a singular n x n complex matrix of rank r. and let d =n—r.
Then there exist d linearly independent n x n complex matrices E, . E,. . ... E, such
that for all nonzero complex numbers ;{73 ... o E=7 By + By + -+ 4By is
an acceptable error matrix for A.

Proof There exist positive integers n,. n,,...,n, withn, +n, +--- +n,<nand
nonsingular matrices P and Q such that

P 'AP =diag[H,.H,,.... H,, Q]
Fori=1,2,....d, let
E;= P diag[s,; K,,.d,,K,,. .. .. 0:,K,,, 01P" ",

where §;; is the Kronecker delta. Clearly, E,. E,, ..., E, are linearly independent.
Lety,, 75, .. .. 74 be nonzero complex numbers.and let E =7 E( +;,E, + -+ - + 74E4.
Fori=1,2,....d, we have

1 0
(Hu. + .I'iKn.)_ l.I‘A'l<l|. = (Hn. + ./'_ 1Kn,)'.I‘AKn. =[ ]

0 0
Therefore, lim ((H, +;,K,) '7.K, )" exists for i=1.2,....d. and it follows that
m= x
A + E is nonsingular and that lim ((A + E) 'E)™ exists. Thus E is an acceptabie

error matrix for A.
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ABSTRACT

A novel system for solving systems of nonlinear equations is proposed. Two different
algorithms are introduced. A speed analysis of the two different algorithms is presented 1nd
compared with the speed of their digital computer counter parts. A great advantage in peed i
shown for large size problems.

1. INTRODUCTION

Systems of nonlinear equations arise in the process of solving many phyvsical problems. They
are a very important class of mathematical problems. Iterative methods are used tc soive such
problems.

In this paper we propose a new method for solving this class of nonlinear problems :ing
optical processors. In Section 2 the iterative methods used in solving nonlinear svitems ot
equation is reviewed. In Section 3 the optical implementation is proposed using two iiffersnt
algorithms. The speed analysis of the two algorithms is given in Section 4. = [n Secticn 3
conclusions and final remarks are drawn.

2. NEWTON's METHOD

Systems of linear equations are given as follows

> »

Ax=b o

-+ -+ - hd
where A is an n x n matrix, x and b are n x 1 vectors. In these systems A and b are given and x
the solution of the system is unknown.

Nonlinear systems of equations can be represented by

or
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Y
where fi's are nonlinear functions of x

. hd . . . . - f
One of the methods used in solving for x in the nonlinear system of equations is Newton's
method. For a single nonlinear equation, an initial solution, xo, of the equation is assumed. and

the (k+1)th iteration of the solution is given by (1)
_ -1
X1 =%~ () T f
where

— ,_8fx
=) and = T0)

For a system of nonlinear equations, Eq. (3) can be rewritten as
-3 _ -1
 AREE O

where
3. (%)
_ 9
Oy = >

and J is the Jacobian matrix.

Let

then

1/ 3\)

Eq. (8) is a system of linear equations to be solved for &g, which is the correction needed for *he

%k+1)tll solution iteration. The algorithm for solving the system of nonlinear equations will be as

ollows:
i) Assume a solution R,.
ii) Compute the nx1 vector ti and the nxn matrix Jy
iii) Solve the linear system of equations Jyx&x = By for &4
iv) Compute the refined solution Ry, = & — &

v) Check if the norm ||h.1— hll < € stop, otherwise go back to step (ii). ¢

allowable error.

3. QPTICAL IMPLEMENTATION

The iterative alﬁorithm introduced in Section 2 requires 0(n3) number of operations when
digital computer. The most expensive part of the algorithm is step :iii;

used with convention

310 / SPIE Vol. 936 Advances in Optical Information Processing il (1988)

1

s the




to solve a system of linear
equations. In  previous
publications{2"¢)  we  have
proposed and analyzed a hybrid
optoelectronic processor, the
Bimodal Optical Computer
BOC, capable of solving linear
systems of equations accurately
and rapidly. In this section we
modify that system to be used
to solve systems of nonlinear
equations as shown in Fig. 1.
We propose two different
algorithms, the first utilizes the
use of the analog processor to
solve the system of equations
(8) approximately, and the
second to use the BOC to solve
the system of equations (8)
exactly (within the specified
accuracy).

"
AnL:gv ‘t
\ g4
v
1/
0
s
[ < X 0
N &=
A/D %L—" o/A

Fig.1 Block diagram of the hybrid optoelectronic system.

3.1 Hybrid Analog Optical Processor

In this system we use the optical analog processor to solve Eq. (8) approximately. For this
system we introduce the following algorithm:

a) Use the digital processor to guess an initial solution ;q,
b)  Use the digital processor to compute both the vector h and the matrix Jy.

¢)  Use the optical analog processor to solve the system J¢ 2§ = f for 2%, approximately,
where the superscript o's denote inaccuracies in optics or electronics.

d)  Use the digital processor to read 20 and compute the refined solution Ry = ¥y - &%
e)  Check if the norm ||Fu.s — full < € stop, otherwise, go back to step (b) and recycle.

3.2 Hybrid BOC Processor

In this system the BOC is used to solve Eq.(8) exactly. For this system we introduce the

following algorithm:

a)  Use the digital processor to guess an initial solution ;co

b)  Use the digital processor to compute both fk and the matrix Jy..

¢) Use the BOC to solve the system Ji k= h, exactly for ke

d)  Use the digital processor to read & and compute the refined solution &y = %k — &
e)  Check if the norm ||f|m - hll < e stop, otherwise, go back to step (b) and recycle.

SPIE Vol. 936 Advances in Opticel Information Processing i1 (1988) / 311




4. SPEED ANALYSIS

The following speed analysis is based on a system of linear equations with “ze, n.

4.1 Digital Processor

The total time required, TDT’ to solve the system of nonlinear equations using a
conventional digital processor is given by

3
Tpr = [ +20(a+1)|Tp, Npy - 9
where

TDl = the time needed to do one digital operation (e.g., a multiplication),

and

ND = the number of iterations needed for the solution convergence.

4.2 Hybrid Analog Optical Processor

The total time required, T0 A 10 solve the system of nonlinear equations using the processor
introduced in Section 3.1 is given by

where
Ty = the time required for the optical analog processor to solve the system of iinear
equations (8) approximately,
and
N A= the number of iterations required for the solution convergence.

4.3 Hybrid BOC Processor

The total time required, TOB’ to solve the system of nonlinear equations using the processor

introduced in Section 3.2 is given by

Tog = [20(a+1)Tp, + Tyl IgNp (11)

where

IB = the number of iteration needed for the BOC to solve Eq. (8) to the specified accuracy.
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4.4 Speed Advantage

It is of great interest to determine what is the break even point for the opti
P . ptical pro
proposed to be faster than the digital processors. This condition is defined by processor

Tpr2Toa )

and
TDT)TOB . \;3)

From Eqgs. (9) to (11) the conditions (12) and (13) can be written as

2 T
n°(n/3+1 ) ( D1
X >1 (14)
P
or
Anx At >1 (13)
for the hybrid analog processor, where

And for the hybrid BOC processor

( w '3-2n(n+1)(IB—1) ]x [TDI

>1, (17)
‘s Ta1
or
Bn x At)l : (18)
Where
2
_n°(n/3+1
Ay = L (19
n%/3 - 2n(n+1)(I5-1)
— ]
o Ip ' (20)
and
T
_To
A=To (21)

The number of iterations, I, and I, usually are in the range of 1 to 10 The ratios, Aq and B,

are problem dependent, and are much larger than 1 for large values of n. On the other hand. A,
depends on the speed of the analog processor for solving a system of linear equation, which can be
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in the range of usec. But since the matrix Jx need to be updated every cycle, writing the matrix
Jx on the SLM becomes the bottleneck of the processor speed. With todays technolog writing a
matrix on an SLM may take a few milliseconds. So A, is much less than 1. In Fig. 3(a) and b}

the Log (Aa) and Log (B,) are plotted in terms of the system size, n, respectively. The ratio A
1, for n = 10, while Ap > 1 for n ¥ 60 and 120, for IB = 10 and 20 respectively. For the A, ratio in

the range of 1073, we can have a speed advantage for the hybrid analog optical processor for n >
50, and for the hybrid BOC processor for n > 120.

b1

(L))

oo

Fig.2 Plot of log of the ratio (a) A, of Eq.(19), and
(b) B, of Eq.(20), in terms of the size of the matrix ,n.

Again this ratio A¢ depends mainly on how fast we can write a matrix on the SLM. By ke
introduction of faster SLM's the speed advantage can be gained for smaller values of n.

5. CONCLUSIONS

Two new hybrid opto electronic processors are introduced for solving systems of nonlinear
equations. The speed of the two processors is analyzed and compared with the speed of digital
processors. It is shown that the main factor of the speed limitation is the speed the SLM's used to
write the matrix on. With the existing SLM's a speed advantage can be gained for n>190.
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ABSTRACT

Analog optics is very fast but not very accurate. Digital electronits is much slower but much more
accurate. Compromise (hybrid) systems appear to be intermediate in both speed and accuracy. As there are
cases in which analog optics is too inaccurate and digital electronics is too slow: hybrid processors may
have an important role to play.

1. ERRORS IN ANALOG OPTICS

Despite occasional claims in the literature, making a multichannel analog optical system with all chan-
nels controllable and repeatable to 1% absolute signal accuracy is extremely difficult. Thus if analog
(number magnitude proportional to light irradiance) encoding is used. the accuracy with which numbers can be
represented is, at best., 1% of the maximum magnitude number.

Unfortunately, 1% representation accuracy of inputs does not lead to 1% representation accuracy of cal-
culated results. Obviously, the exact errors can not be predicted {otherwise they would hardly count as

errors!). What we can predict is some sort of average or expected error.

Rather than predict errors in specific components of a vector or matrix. we seek more global metrics.

The norm function I - I is convenient. The norm of the vector
- T
A = (Vy. Vo, . . . V)

is usually defined as

- ) /N
PV = DN v [V - vy Y]
Three N values are common.
N=1:0Vig _|vy-]vad- . . «|v.
=2 NV, = 2 2 L1z 12
N=2:0Vily=(lvy[2«]vpl2. . -|vyl2] .
N-wo: VI, = max IVn
k=1,.... n

Most mathematicians use the N = 2 (Euclidean) norm and drop the subscript. e g..

BV = [ V2 - w2 - y2 e
We can now define a matrix norm
Al =max LAx
- x
X
Since any ; can be expanded in terms of the eigenvectors ;1. ;2. - ;n of A,
we have
; = C) ;1 + C2 ;2 s . . . = Cp ;n
But
A ; = €1 A ;1 -t Ap ;2 - © Cp Ap ;“
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vhere
Aej = Aj ey
Clearly

T AN =max |Ag]
i

Equally clear is the relationship

1 A-1g = l{n SV RYIDE

A convenient measure of the ability of a matrix to lead to accurate results is the condition number. This is
sometimes written as k(A), x{(A), or cond (A). For no particular reason, we choose x(A). By definition,

x(A) =0 A8/0 AW = JA)pax /1A ] min

Roughly speaking, the output error is x(A) times the input or "representational” error in solving linear
equations, inverting matrices, solving eigen problems, etc.

For these introductory purposes, these observations are sufficient. With representational accuracy
fixed at 1% or less and requiring 1% or better accuracy in our results, we conclude that analog accuracy may
suffice if x(A)€1. Since, however

X(A) = | A | pax / |2 | min .

we have X(A) ) 1. In fact, we often have i(A) )) 1. For these cases analog processors are hopelessly inac-
curate. Accuracy is always lost.

II. PROBLEMS WITH DIGITAL OPTICS

Digital optics appears to offer a possible solution. Each number is represented by multiple analog chan-
nels in time and/or space. If multiplicity in space is used and proper number regresentation is employed,
great parallelism and essentially-analog speed is accomplished at the price of great physical complexity. An
additional problem in formatting and deformatting tends to slow the process and increase the power consump-
tion. These problems may not be insurmountable but they are certainly difficuit enough and far enough away
from solution to motivate the search for alternative (non digital) ways of making accurate optical pro-
cessors.

III. OBSERVATIONS ON COMPUTATIONAL COMPLEXITY

We want to have a tool for addressing the question: “How difficult is this calculation“? The now-
traditional measure is computational complexity. The basic idea is to break up the operations inte their
most primitive parts, e.g., multiplies, and count the number of these required. Actually, we do one other
important calculation. We associate a number N with the problem size, e.g.. an N x N matrix has size N. We
then ask how the number of calculations scales with N. Many algorithms, especially in linear algebra, have
polynomial complexity. That is their complexity scales as roughly NP, written O(NP) and often said "order of
NP " Note that it is the algorithm not the problem that has a complexity. Matrix-matrix multiplication as

we all learned it is O(N3). Minimal complexity algorithms now approach O(N2-5). This difference is far from
subtle for large N.

Another way of viewing computational complexity is as a minimum price to be paid to make a calculatijon.
That price can be paid in spatial complexity. temporal complexity or both. We will be aiming at high speed
and thus low temyoral complexity. To do this we will use a Bimodal Optical Computer (BOC) which does high

complexity tasks by analog optics and lower (essentially by a factor of N) complexity task by digital
electronics.

IV. ILLUSTRATIVE ALGORITHM

We suspect all linear algebra probiems can be solved by BOC's. We will discuss the simple A x = b prob-
lem first. Other algorithms for other problems are shown in an appendix.

We suppose we have an analog optical Ax - b solver. We are given, to digital accuracy, A and b. We
represent them in our optical solver as best we can. Our solution vector can be called x,. To check whether
Xg is adequate or not we calculate (digitally., accepting x, as fully accurate) a residual

ro'b‘AXo.
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This is O(N2) digitally. If Iro |1s acceptably small, we quit. Otherwise we solve
A AxO = l'o
optically. Note that

A (Xo *+ AXo) = AXg + AAxg

= Axp * To
Axg + (b - Axg)
b.

Thus X, + 4X, is the desired x. Unfortunately, our analog solution for Ax, is inaccurate. Our result is not
Ax, but &xg.

We fora
Xy = Xo + 6Xg
digitally and evaluate
r, = b - aAx,
digitally. If |r, is small enough, we quit. Otherwise we recycle.
That is the basic algorithm. It requires some modifications for use with optics. It also requires some

convergence analysis. After all, if the analog solutions are inaccurate, isn't it possible that the solution
will get worse not better?

V. CONVERGENCE

It is trivial to show that if we can guarantee |rd < Irk_ll, then convergence must occur. In Ref. 1, we
showed that this leads to the sufficient condition

PLEN 1
XA yxv 2
where E is the representation error matrix. If we like, we can rewrite this as

1TEN<| A |nax/2x(A).

To first order it seems more profitable to assume that & E I/l A I depends more on the computer than on the
matrix A and can be replaced by a universal number €, which we will call the computer accuracy. Then conver-
gence occurs if

X (A) € < 1/2.

For € = 0.01, our hoped-for 1% accurate computer, we strongly expect convergence for

x (A) < 50.

We cannot guarantee convergence because it is the actual Il E #/f A 0 not its fictional problem-independent
average that counts. Furthermore there is no reason to believe that convergence might not occur for much
higher x (A) values. We would expect that the probability of convergence is strongly related to

R = X(A)/Xegt
where

Xest = 1/2 €
Thus we might expect convergence for virtually all R=1 problems and a much smaller fraction of R=100
problems. Even this statement hides a complexity. Given a problem and a computer. each particular incident
(attempt to represent and solve the problem) leads to a different result. This can even be a strength

if (a) we can afford the spatial or temporal complexity to calculate N independent answers and (b) we invoke

the central limit theorem to suggest a roughly YN improvement in €.

VI. LORD KELVIN'S CONTRIBUTION

Th2 basic approach of using a fast, low-accuracy processor in conjunction with a slow, high-accuracy com-
puter is quite old. The history is available in Ref. 1 and references therein. Lord Kelvin (2) made a vital
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ihere A
ime)

ribution: the proposal that the residual r be scaled to utilize the dynamic range of the processor well.

Abx =T
\ld be multiplied by a scaler s to form

A (sax) = sr,
‘e 1 sr 1_ =1 (the maximum representable number}. [t is not necessary to know s to high accuracy berause
-ections to corrections are not first order critical. Since r is calculated digitally, we can also caicu-

» (to low accuracy)

s, = /dr |Q

the same time.

ViI. THE Ax = b SOLVER
We propose to use the 0(1) time complexity, time continuous Ax = b solver of Cheng and Caulfield(3). The
rt of the processor is the fully parallel Stanford matrix-vector multiplier. Figure 1 shows the system.
ut lights representing x components are spread vertically across the columns attenuating mask representing

Row sums of the transmitted light are detected to give components of the output vector y. For all k, we
ow

ve X, . Here Y is a component of the calculated

y = AX.

PLANAR
WAVEGUIDES

LED
ARRAY X A

-
\\ N -~
P4 '4 ]( .
\\ ~. \\\\
~ 3. =~
\\\ Il
N - _J
/ 2 I
y b

LIA/D DIGITAL | I /A

Fig. 1 System layout of the Bimodal Optical Computer (BOC)

Cheng and Caulfield showed that smooth convergence to the | r|= o0 solution occurs at a rate proportional

e-)‘mln t/tg,

min i3 the eigenvalue of A with minimum | A | and ty is a characteristic time (roughly signal round trip
Obviously convergence requires

Amin > 0.

\s$ it turns out {3), this is a sufficient condition for convergence. Calling the normalized time

T t/e,
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and noting
Amin = ‘min Amax/Amax
= Amax/x(A),
we have a relaxation rate
e~ maxT/X(A).
Thus many things affect the relaxation rate:
to.
the inherent processor speed,
Amax:
the maximum eigenvalue, and
x(A),
the condition number of the problem

Thus even though the operation is temporally 0(1), the convergence speed is clearly problem dependen
Easy problems (low x) converge rapidly. Hard problems, high x. converge slowly.

VII1. SPEED ADVANTAGE
Let us compare a BOC Ax = b solver with a digital iterative Ax = b solver.

A single cycle requires one hybrid Ax = b solver cycle, Ty, plus temporally 0(1) A/D and D/A operati
plus 2N (N+1) digital electronic operations of duration Tpj. Taking the conversjon times into Ty, we ha
total time

Ty= Iy [Thy + 2N (N+1) Tpi)
where Iy is the number of required jterations.

The iterative digital Ax = b solver requires a time

3 2
Tp= Ip [(N7/3) « 2N° Tp,].
We want
TH << TD
or
rly’/a) + 2N%(1-k) - 2kN Tpy »>> 1.
K Th1
0 (N’) PART o(1)
W PART
Here

k = (Iy/Ip).
Let us consider the two factors separately.

The quantity

T
Q- 2

Tyt
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problem dependent through Ty. For ultra fast electronics (nanoseconds) and small loops (tg ~ 1
nosecond). the A/D and D/A converters may be the speed limiters. For 1% accuracy

e~ mint/to _g 01,

us

Agint ~ - In (0.01)
o

Ty ~ - (to/Amin.) In (0.01)

w ty ~ D
Q - to/Tq - + 4.6Apin

.early

Q > 1, for all Agjp 3. .22,

1t perhaps not much less.

The O(N*), Ap, part depends strongly on k. Obviously k > 1. Hopefully we can keep k ~ 1. Let us examine
irious k > 0 case plotted in Fig. 2. We see that large advantages occur for low k (rapid convergence) and
irge N. That is we win for large, easy, or (preferably) large and easy problems. If, for example, @ = 0.1,

2 obtain a factor of 10 advantage for all k-N products above the horizontal line in Fig. 2. If the problem
ize is, say, 200 and k ~ 1, the advantage can be many many orders of magnitude.

260
240 4
220
200 o
180 <

. Ap

160 <
140 ~
120 4

100 #

80 A

OPERATION ADVANTAGE
{Thousands)

60 A
40 A
20 A

o YT t T T

7 T T
(4] 40 80 120 160 200
SIZE OF THE MATRIX, N

T T

Fig. 2 The operation advantage, Ap

IX. SIMULATIONS

We can add Gaussian stochastic errors to the "true"” numbers to simulatevariocus accuracies.

Figure 3
shows the [

' g 33 a function of x{A) for.varXOus problems, where # r ® / 1 x B < 10-% is required. Note [, /
‘. since [D may be 5 to 10. Thus 1:10 accuracy is a low k situation. Note as well. that convergence tends
-0 occur even for R > 1 (R = 4 in Fig. 3). We have achieved convergence for R's as high as 60. We might
vant to relax from €=0.01 (Fig. 3) to much less trying cases. Figure 4 shows that

[er,

1 very benign result.

SPIE Vol. 634 Optical and Hybrid Computing (1986) /7 91




NUMBER OF ITERATIONS

T g

T
200 400
CONDITION NUMBER FOR A

Fig. 3 Computer simulation results for the number of iterations needed for con-
vergence of the solution, plotted vs. the condition number.
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&0
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20 -4
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Number of lteralions

K(A) = 150
o, = 'Ol(bl)max
9. = .OI(XI)M

o

— T T T T Lo

T -r
0.08 Q.12 0.16 0.2
STD Error In The Mask's Matrix

0.24 0.28

Fig. 4 The number of iterations plotted vs. the error's standard deviation in
the matrix's mask, for a matrix with a condition number=150.

X. THE FUTURE

Besides building a moderately accurate BOC for testing, we will investigate improvements. Two imp

ments are suggested below.

First, we can operate on A by "equilibration” to get an equivalent matrix A' such that

X (A") < x (A).

That is

Ax = A (DD ')x
= (AD) (D"'x)
= A' x'.

Here D is a diagonal matrix.

For equilibration we might require row norm equality. In our early expe

this led to roughly 20% improvement in condition number.

Second, we can use “"convergence factors" to try to force or improve convergence.
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rather than

se
Xf = Rk-1 - @ k1 AXp-jp.
‘lever choice of the 8, 's we may be able to improve performance.

APPENDIX

In this appendix we present algorithms for solving the inverse of a matrix and the eigenvalue problems
g BOC.

The Inverse of a Matrix

For an NxN matrix A the inverse matrix A-' is defined to satisfy the following relationship

AA-' =], where I is the identity matrix (Al)
:h can be rewritten as

Al=1, A2=',. ... ,A-") = 1 (A2)
il i2 in
re A™' is the j-th column vector of the inverse matrix A-! So eq. (A2) can written as n systems of lin-
equations, which can be solved individually using the BOC as outlined in section IV.
Another method for solving the inverse matrix problem is by using the -1Pan-Reif method (4). If the
rix B=A") then define the error matrix E as
E=1-BA (A3)

a-' can be represented in terms b and E as

A=' = (A-1B-1)B = (I-E}-18B (A4)
(1-x)""a 1 = lexexZexds .. for x 1. (as)
1-x
ilarly,
A~'= (1+ E + E2 + E + E? +,....)B (A6)
if we start with an approximation for the inverse of A by BO' then the error matrix E1 will be given by
(A7)
E1 =1 - BOA
in more general form for an iteration k
Ep=1 1A (A7)
d
= {1 + E . E; P ) Br-y (A8)

s . -1 . .
n and Reif introduced a simple way of evaluating By the initial approximation of A °. Define the factor t

. (A9)

1
(max )} A(L.J) | (max } |A(I.J) |)
1J 1J

ich {3 the product of the maximum magnitude of the sum of the rows of A by the maximum magnitude of the sua
the columns of A, Now 80 will be given by

By = t A (AL0)
H

lere A" is the Hermitian transpose of A
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We now introduce an jterative method for solving the inverse problem. Eq. (A9) can be written as for the

case of small error matrix

B, _ (A12)
k= (L +E ) B, . kal.2,...

Now let us outline the iterative method for finding the inverse of A:

1) find By = t aH
i1) Eg =1 - B JA, k=1.2,...

$11) B = (1 » Ep) By, k=l,2,..

iv) Cycle iteratively through steps ii) and iii) until all elements of Ek are within the required a~curacy
then terminate the proces and B, is equal to the inverse of A. Doing this method using a digital computer
requires a long time of operations and a large memory space for the matrix multiplication We can do this
matrix multiplication using the BOC in mu less time with the same accuracies.

2. The Eigenvalue Problem

Determining the eigenvalues and their corresponding eigenvectors is a very fundamental and important
problem in linear algebra. Une of the most powerful method for determining the eigenvalues and eigenvectors
is the inverse iteration method (5). For an NxN matrix A the eigenvalues Ai and their corresponding

eigenvectors §1 are defined by the equation

Axy = Ajxg (a13)
Let A has an n destinctive eigen values such that

(A14)
Assume q = Al then
(a = qn yPD .z (P) (A15)
- - (A16)
+ (p+1)
where z(p'l) = Y(P oy e
~(p) ~ -~ (p)
y =Xy, and 1/8 y I o = Ai -qas p -~ (Al17)

then solving the system of equations

()]
given in Eq. (Al5) we get ; (1) and from eq. (al6) compute 2(1) and we keep iterating until the vector yP

become stable tl:n we terminate the iterations. This determines both the eigenvalue and the eigenvector
very accurately.

>
so by assuming a value for the vector 2

The initial value of the eigenvalue q can be tetermined using Gerchgorin's theorem (6).
for an nxn matrix A, let us define the radius 'k as

T :nglakj’ (A18)

Ik

where a, . as the k,j coefficient of the matrix A. rk is a radius of disk Dk centered at ayi within which an
elgenva?&e will lie

Dk = (] |A-a | r) <ka=l.2.3,....8 (a19)
Then each eigenvalue of A must lie within the union s of these disks
N
s =Ubp
k (A20)
K=1

So, after we determine the initial eigenvalues for the matrix A we can use the inverse iteration method to
find the more refined values for the eigenvalues and their corresponding eigenvectors. In this process we
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will use the BOC to solve the set of equations (al$5) within a reasonab,e accuracy. this method will have the
speed advantage over the all-digital processor because again we reduced the problem to a set of linear equa-

tion solution.
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ABSTRACT

The use of the Bimodal Optical Computer (BOC) in determining the weights for an
adaptive phased array radar is introduced. Interference canceling is presented for two cases:
first assuming the direction of the jammer is known, secondly no a priori information is
assumed. Effect of the jammers on the array pattern is shown for up to four jammers.

1. INTRODUCTION

The sensitivity of a signal-receiving antenna array system to interfering noise sources can

' be reduced by suitable processing of the outputs of the individual array elements. The

processing of the output of the array system acts as an adaptive filtering system 1-4. The

adaptive phased array radar systems provide the means of suppressing unwanted interference

signals. This is achieved by nulling the array pattern at the direction of the jammers. Many

l algorithms have been introduced for the adaptation process and these are reviewed by
Monzingo and Miller2.

In this paper we present a new technique to determine the weights for the adaptive array
using the bimodal optical computer (BOC)5-7. The bimodal optical computer is capable of
solving systems of linear equation very rapidly with high accuracy. In the adaptation process
we reguce the optimization problem to a system of linear equations, which in turn is solved
using the BOC.

In Section 2 we review the basic theory of adaptive phased array radars. The bimodal
optical computer algorithm for solving tle optimization problem is presented in Section 3.
Computer simulation results are given in Section 4. Conclusions and final remarks are given in
Section 5.

2. _ADAPTIVE PHASED ARRAYS

In adaptive phased array radars the incoming signal is detected by an array of sensors. The
detected signal is a combination of the target signal plus interference and noise signals. The
system is adjusted in such a way to suppress the interference signals reception without
affecting the desired signal.

In this section we consider the two general cases of interference canceling: first by assuming
that the interference signal direction is known; secondly by assuming no a priort information is
known about the interference signal.

2.1 _Int i irection i3 Kn

When the interference signal direction is known the weights wi's of the array can be chosen
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to suppress the interference signal. Let the system shown in Fig. 1 be used to demonstrate this
adaptation technique.

Fig. 1 Array configuration
for interference
canceling

The output signal of the array s(t) is given by !
s(t) = P[(w; + wg) sin w t + (wot+w,) sin(w t - 8- ;-)]

+I[w, sin(wot - 8) +w, sin(wot - 0-;)

+ wa sin(wt + 0) + w, sin(wt + 0-%)] , (1)
where

P = the pilot signal,

I = the interference signal, and

6 = the phase shift

=20 Gy, (2)

To cancel the interference signal and to make the signal s(t) equal to the pilot signal, we
need to solve the following system of linear equations for the weight w;'s:

(w, + wy) Cosd —(wy-w,)sind=0
(wg + w,) Cos0+(w1-w3)sin0=0 .

(3)

The size of this system of linear equations depends on the number of sensors in the array.
The number of jammers can make the system under or overdetermined, which are both time
consuming algebra problems.

172 / SPIE Vol 886 Optoelectronic Signal Processing for Phesed-Array Antennas (1988)




i
' . I[ . .!E '. .lg

; This is the most general case where we assume no information about jammers. The System
v ' used in this case is shown in Fig. 2.

' Fig.2  Basic adaptive
array structure
with known desired

. signal

' o
Relerenes vgrat

Each of the n sensors receives a signal xi(t) which is in turn multiplied by a variable weight
wi. The output signal s(t) is compared with the desired signal d(t), their difference, the error
signal e(t), is used to determine the value of wi's. The output of the array is

] n
(4)

s(t) = 2 x,(t) w;

' i=1
or
' s(t) = #1 2 (3)
l where
w, x,(t)
i #=|%|and2= xi?) .
W x_(t
n n ) (6)
' For digital sampled data ,
] () = #7 2G) , (7)
and
. «(j) = d(j) - 35) = d(j) - #7. #(j) . (8)
l The optimum value of the weights, wi's, is the one reduces ¢(j) to zero or at least minimize it.
For N samples of data the optimum weights satisfy the following set of systems of linear
' equations:
' SPIE Vol. 886 Optoslectronic Signel Processing for Phased.Array Antennas ( 1988)/ 173




#T 2(1) = d(1)
#T2(i) = (i) Q
wi 2(N) = da(N)
The N sets of equations have n unknowns, and usually N >> n, and are inconsistent and
over specified. The optimization problem can be rewritten as

_np-l
*opt - R'xx rxd (10)
where
[ X%, X % |
- T X9¥X1 X9X
R_ =E{tt'} = E{ ™}, (11)
*a*1 Xa*n]
and
t 4 = E(d}. (12)

The matrix R__is called the covariance matrix, where E{-} is the ensemble average.

Many algorithms are introduced? to solve for the weights in Eq. (10). Some of the popular
algorithms are the least mean square (LMS), and the direct matrix inversion (DMI).

We'll briefly mention the DMI algorithm since it leads to the algorithm introduced in this
paper. Eq. (10) cannot be determined exactly using a limited number of samples of the input
data. For practical consideration a small number of samples is detected to be used in

determining #. The estimated value of Eq.(10) can be given by

(13)

"~ >

2 _ Bl
*'Rn xd °
where

Rxx is the sample covariance matrix, and rxd is the sample cross—correlation vector, and are

given by
R =g 2, 20 270) (14
j=
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and
. I
ta=k 2, ) dG) . (15)
5=

and K is the number of samples. The DMI algorithm determines the inverse of the sample

covariance matrix ﬁ.x*, then from Eq. (13) evaluates &.

s BIMODAL OPTI MPUTER A H

Using either the LMS or the DMI algorithms, depends in its convergence on a number of
factors, the most important one of them is the condition number of the matrix Rex. If the

matrix Rxy is ill-conditioned or singular, it either converges very slowly or the inverse does not
exist, respectively. In such cases other methods might be used, but they are lengthy and time
consuming, so they are not suitable for a system where the time is a very crucial element.

We have shown in previous publicationss-7 that the bimodal optical computer is capable of
solving such problems, where the system of equations is ill-conditioned, singular, overspecified
or underspecified. The BOC is a hybrid system in nature, Fig. 3. It uses analog optics to solve
the problem approximately but rapidly
and it utilizes the digital electronics to
refine the solution, in an interative
scheme.

The optimization problem for the A

weights W introduced in Section 2, can il
be rewritten in the following form, \ / y

27001808
b AB0AY

from Eq. (13)

N,

Rxx*=rxd . (186) 1) 4

Eq. (16) is a system of linear equations
can be solved using the bimodal J‘

optical computer. Among the 0
advantages of using the BOC over the

conventional techniques are: Speed, U
especially for lar size arrays, sterras
convergence of the solution for difficult a® resesseee b/A
problems, ill-conditioned singular -
sgstems,which is the case of most of
the adaptive array radar problems.

Fig. 3 The Bimodal Optical Computer

In the following section we present some of the preliminary results from computer
simulation studies of the BOC in processing adaptive array problems.
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4. SIMULATION RESUL

Two simulation experiments are presented in this section. In the first experiment we used
a five element array, and ass_umed the directions of the jammers are known. In the second
experiment a 2 element array is used and no a priori information is assumed.

In Fig. 4 the array pattern of the 5 element array is plotted as a function of the angle, .
Fig. 4(a§ shows the array pattern for the adaptation. In Fig 4(b) a jammer at 450 was
considered, the pattern after adaptation is shown, the jammerknown. The array pattern after
adaptation has reformed in such a way to null the jammer signal. In Fig. 4(c) four jammers
are considered at 450, 800, 1209 and 1509, the array patis again reformed to null all the

jammers signals reception.

N )
9 [ "]

.9 (a) « 9 (b)

ar 4 vj

o 4 [ ]
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Yy a2 9
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Fig. 4 Phased array pattern for 5 elements, (a) before adaptation, (6) adapted pattern
for a jammer at 450 , and (c) adapted pattern for four jammers at 450, 800, 1200,

and 1500.
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In Fig. 5 the BOC was used to solve the adaptation problem assuming no a priori

information about the interference signals.
before adaptation. In Fig. 5(b) to (d)

Fig. 5(35 shows the two—element array pattern
the pattern is plotted for a single jammer placed at 30°,

450 and 600, respectively. In all these plots the array adapted to cancel the interference signal
in each of the given cases. In all of the above results the jammer signals is considered to be of
the same strength as the desired signal, and the convergence of the solution obtained in less
than five iterations. Also the condition number of the Ryy is between 106 and .
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Two-element phased array pattern, (a) before adaptation, (b) to (d) adapted
patterns for single jammers at 300, 450 and 600, respectively.

4. CONCLUSIONS

The bimodal optical computer is shown in these preliminary results to present a powerful
mean in solving adaptive phased array problems. We are considering in the future work larger
array sizes, receiver noise, and very strong interference signals.
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ABSTRACT

The use of the bimodal optical computer (BOC) in determiming the
weights for an adaptive phased array radar is introduced. Interference
canceling is presented for two cases: (1) assuming the direction of the
jummer is known and (2) assuming no a priort informanion. The effect of
the jammers on the array pattern is shown for up to four jammers.

1. INTRODUCTION

The sensitivity of a signal-receiving antenna array system to
interfering noise sources can be reduced by suitable processing
of the outputs of the individual array elements. The processing
of the output of the array system acts as an adaptive filtering
system [1-4]. The.adaptive’phase array radar systems provide
the means of suppressing unwanted interference signals. This
is achieved by nulling the array pattern in the direction of
the jammers. Many algorithms have been introduced for the
adaptation process and they are reviewed by Monzingo and
Miller {2).

In this paper we present a new technique for determining
the weights for the adaptive array using the bimodal optical
computer (BOC) (5-7]. The bimodal optical computer is capa-
ble of solving systems of linear equation very_rapidly with
high accuracy. In the adaptation process we reduce the prob-
lem to a system of linear equations, which in turn is solved
using the BOC.

In Section 2 we review the basic theory of adaptive phased
array radars. The bimodal optical computer algorithm for
solving the adaptation problem is presented in Section 3.
Computer simulation results are given in Section 4. Conclu-
sions and final remarks are given in Section 5.

2. ADAPTIVE PHASED ARRAYS
[n adaptive phased array radars the incoming signal is de-
tected by an array of sensors. The detected signal is a combi-
nation of the target signal plus interference and noise signals.
The system is adjusted in such a way to suppress the inter-
ference signal reception without affecting the desired signal.
In this section we consider the two general cases of inter-
ference canceling: (1) by assuming that the interference signal
direction is known and (2) by assuming no a priori informa-
tion is known about the interference signal.

2.1. Interference Signal Direction is Known. When the inter-
ference signal direction is known the weights w, of the array
can be chosen to suppress the interference signal. Let the
system shown in Figure 1(a) be used to demonstrate this
adaptation technique. The output signal of the arrray s(¢) is
given by (1]

s(1) = P[(wy + wy)sinant + (wy + wy)sin(wyt - 8 ~ Ln)]
+ 1w, sin(wyt = ) + wasin(wyt - 8 — L)
+wysin(wyt +0) + wysin(wgr + 0 ~ §w)]. (1)
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where

P = the pilot signal.,
I = the interference signal.
¢ = the phase shift, (2)

2nd
0= Tsin ¥.

To cancel the interference signal and to make the signal
s(t) equal to the pilot signal, we need to solve the following
system of linear equations for the weights w;:

wy + wy = |,

W + wy = (),

(3

(w, + wy)cos 8 — (wy — w,)sind = 0,

(ws + wg)cos @ + (w; — wy)sind = 0.

The size of this system of linear equations depends on the
number of sensors in the array. The number of jammers can
make the system under or overdetermined. both of which are
time consuming algebra problems.

2.2. No A Priori Information is Known. This is the most
general case where we assume no information about jammers.
The system used in this case is shown in Figure 1(b). Each of
the n sensors receives a signal x,(¢) that is in turn multiplied
by a variable weight w,. The output signal s(r) is compared
with the desired signal 4(r) and their difference. the error
signal ¢(r), is used to determine the value of w,. The output of
the array is

n

s(1) = L x,(0)w, (4)
(=1
or
s(t) = wix, (5)
where
wy -\'1(')
w=|W | and x=| %(1) |, (6)
W, x,(0)

For digital sampled data

s(7) =wix(y) (N

and

e(7) =d(j) = s(j) =d()) - wix()). (8)

The optimum vaiue of the weights w, is the one that reduces
€( ) to zero or at least minimizes it.

For N samples of data the optimum weights satisfy the
following set of systems of linear equations:

wix(1) = d(1)
: (9

wix(e) = d(1)

wix(N) = d( V).
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Figure 1 Basic adaptive array system with (a) signal and noise directions known and (b) no a prion information assumed.

The N sets of equations have n unknowns, and usually
N > n, and are inconsistent and overspecified. The optimiza-
tion problem can be rewritten as

wo = RIlr,. (10)
where

R, = E{xx"} (1)
and

ro= E{(xd}. (12)

The matrix R, is called the covariance matrix. where E{ -} is
the ensemble average.

Many algorithms are introduced (2] to solve for the weights
in Eq. (10). Some of the popular algorithms are the least mean
square (LMS) and the direct matrix inversion (DMI).

We will briefly mention the DMI algorithm since it leads to
the 2lgorithm introduced in this paper. Equation (10) cannot
be determined exactly using a limited number of samples of
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the input data. For practical consideration a small number of
samples is detected to be used in determining w. The esu-
mated value of Eq. (10) can be given by

a

i‘V’R\_\l‘i\d‘ (13)

where R, is the sample covariance matrix and r , is the |
sample cross-correlation vector that are given by

N 1 X ‘
R\.-;ZX(/)xr(/) (14) i
=1
and
1 K
t,=—= L x(s)d()): (15)
-1

K is the number of samples. The DMI algorithm determines
the inverse of the sample covariance matnx R, and then
from Eq. (13) evaluates w.
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Figure 2 The bimodal optical computer used in solving a system of linear equations.

3. THE BIMODAL OPTICAL COMPUTER ALGOR!ITHM
Convergence of either the LMS or the DMI algorithms de-
pends on a number of factors. the most important being the
condition number of the matrix R_,. If the matrix R, is
ill-conditioned or singular, it either converges very slowly or
the inverse does not exist, respectively. In such cases other
methods might be used, but they are lengthly and time con-
suming, so they are not suitable for a system where time is a
very crucial element.

We have shown in previous publications {6, 7] that the
bimodal optical computer is capable of solving such problems,
where the system of equations is ill-conditioned, singular,
overspecified, or underspecified. The BOC is a hybrid system
by nature; see Figure 2. It uses analog optics to solve the
problem approximately but rapidly and it utlizes the digital
electronics to refine the solution, in an iterative scheme.

The adaptation problem for the weights w introduced in
Section 2, can be rewritten in the following form, from Eq.
(13):

R w=1t, (16)
which can be written as
Ax = b, (17)
where
A=R,,
X =W,
b - 'u/

Equation (16) is a system of linear equations that can be
solved using the bimodal optical computer. Among the ad-
vantages of using the BOC over the conventional techniques
are speed. (especially for large size arrays). convergence of the
solution for difficult problems, and ill-conditioned singular
systems, which is the case for most of the adaptive .rray radar
problems.

We review here the BOC algorithm in solving the system
Ax = b.

(a) Solve Ax = b using the analog optical processor to get
Xg-

(b) With a dedicated digital electronics processor. read x,,
and evaluate the residue

P, =b~ Ax, = Ax — Ax, = A( X,,). (18)

(¢) Normalize r, to use the dynamic range of the system.
(d) Solve optically the system

Az = st (19)
where
z=s5(X,). (20)

and s is the radix used in normalizing r.
¢) Evaluate electronically

X, =Xy = A, (21)
and
ro=b - Adx,. (22

(0 If Ir,| is smali enough. stop. Otherwise. go to (¢) and
recycle.

In the following section we present some of the preliminary
results from computer simulation studies ot the BOC in
processing adaptive array problems.

4. SIMULATION RESULTS

Two simulation experiments are presented in thus section. In
the first experiment we used a five element array and assume
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Figure 4 Two clement phased array pattern (a) before adaptation and (b)-(d) adapted for single jammers at 30°, 45°. and 60°. respectively
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the directions of the jammers were known. In the second
experiment a two clement array is used and no a priorni
information is assumed.

In Figure 3 the five element array pattern is plotted as a
function of the angle y. Figure 3(a) shows the array pattern
before adaptation. In Figure 3(b) the pattern after adaptation
is shown for a jammer at 45°. The array pattern after adapta-
tion has reformed in such a way that it nulls the jammer
signal. In Figure 3(c) four jammers are considered at 45°, 80°,
120°, and 150°. The array pattern is again reformed to null all
the jammers signal reception.

In Figure 4 the BOC was used to solve the adaptation
problem assuming no a priori information about the inter-
ference signals. Figure 4(a) shows the two-element array pat-
tern before adaptation. In Figure 4(b)-(d) the pattern is
plotted for a single jammer placed at 30°, 45°, and 60°,
respectively. In all these plots the array adapted to cancel the
interference signal in each of the given cases. In all of the
preceding results the jammer signals are considered to be of
the same strength as the desired signal, and the convergence of
the solution obtained in less than five iterations. Also the
condition numbered of the R, is between 10° and oo.

S. CONCLUSIONS

The bimodal optical computer is shown in these preliminary
results to present a powerful mean for solving adaptive phased
array problems. We are considering in future work larger
array sizes, receiver noise, and very strong interference signals.
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Abstract

An optical-hybrid matrix processor is presented and campared in its speed with a digital electronic
processor. Optical-hybrid matrix processors are shown to be far more superior in their speed in solving
systams of linear equations. This advantage in speed increases with the increase of the matrix size. The
problem of the convergence of the solution using the optical-hybrid is investicatad. It is found that even
with using elctro-optical systems with an error as high as 5% in the I/O0 devices, convergence was achieved for

matrices with condition numbers as high as 150. Some means of improving the condition number »f a matrix are
also intoduced.

l I. Introduction

Analog optics is very attractive for signal processing and camputing because of its ability to process
two-dimenstional data in parallel very rapidly. Unfortunately, this high speed parallel processing achieves
. only low accuracy because of the nature of the analoag processing especially in the optical systems. These
‘ accuracy probleams rise fram errorslin representing and reading tne signal using the electro-optic 1/0 devices.
The method introduced by Caulfield™(which is outlined in section II of this paper) cambines the high speed ard
parallelism of the optical processor and the high accuracy of the digital computer, using Lord Kelvin's
iterative method.® In section II of this paper we present a comparison between the time required to solve
a systam of linear equations using the optical-hybrid processor to that required by the digital processor. In
section III we present a numerical analysis of the convergence of the solutions for a linear algebraic
equations as a function of the condition number of the matrix and the errors in representing the I/0 data in
the optical system, using oamputer simulation of the optical-hybrid processor. In section IV a conclusion and
final remarks are drawn.

II. Canputation speed analysis

Tae optical-hybrid processor works in the following manner for a system linear equations (it is also app~
licable to other problams- both linear and nonlinear),

A i = E ’ (l)
where A 1s an nxn matrix, x and b are nxl vectors.
a) Using an optical analog processor we can calculate an approxamate solution x° of the linear system, the

superscript O's indicate inaccuracies in the optics and electronics, so the equations solved by the optical
processor are

INEP SR (2)

b) Remember the solution to a high accuracy with the digital camputer. Use a dedicated digital processor to
calculate the residue

t=b-AxX=A(x-x)=Adx.

(3)
¢) Use the optical analog processor to solve the linear equations
Ay=s2, wherey =s 4x, (4
for x, where s is a "radix", or scale factor chosen to Take a good use of the dynamic rarge.
d) Use the digital processor to refine the solution for x*
=+ pax. (5)

If the refined solution _)51 is accurate enough terminate the iterationd. Otherwise go back again to d), ¢) and
d) for a more refined solution following the above outlined procedure.
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To get some quantitative values for the speed of this process campared to that carried by the digital
camputer, we will calculate the number of operations required by each method then multiply it by the time
required by each cperation, we are qoing to consider the number of operations regardless if they are additions
or multiplications,

Let us consider an i matrix A , the time required for one iteration of the procedure outlined above,
Top+ is given by

ToL = TM+2n(n+1)'rm, (6)
where T’u=thet.i.rrerequizedtosolveA5=bbyanalogoptic3.
and  1Tp) = the time required to make one digital operation.

Therefore the time required to make l, iterations with the optical processor is given by

To=Ig{ Ty+t:(in+l)T!. M

while the time required by the digital camputer to solve the linear equations using the Cholesky's method3
in ID iterations takes the time, TD’ given by
3 2
TD-(n /3+2n)IDTDI (8)
The condition which we need to satisfy to have an advantage in time in using the optical processor over the
digital processor is

To <“Tp - (9
Therefore, for a clear time advantage for the optical—hybrid processor, fram Egs. (7)-(9) we want that

L{ Ty+2n(n+1)Tytec (nd/3+2n2) 57y (10)
or

k{ Ty+2n(n+1) Tyl (nd/3+20) 1 (11)

where k = Iy / Iy . Eq. (11} can be rewritten in the following form
nd/3+2n2 (1-k)-2kn Tol/ Tal > 1 . (12)
X

The advantage of using the optical-hybx:id processor over the digital processor in speed is abvious fram
Eq. (12), and it increases by the increase of the size of the matrix n. To examine this condition very
carefully, let us rewrite Eq. (12) in the following form

APAI >>ll (13)

where 3 D)
APsz(n/6+n(l-k)-nk]/k,and (14)
(15)

Ap= Tpy/ Tp -

Here Ap is an "inherent advantage®. A single analog operation is much faster than the digital one. The whole
Ax=b solution will be slower than a single digital operation, but the analog optical Ax = b solver works at
speeds independent of n. On the otherhand, Tp) is operation deperdent, also it includes the time in perfor-
ming the operation and in storing ard retrieving the data fram the memory of the camputer,which is a time

consuming especially with the increase of n. Y e
is a problem related advar :age, 1t a function of the 100 4 .
size of the matrix n and the ratio of iterations k. The 220
operation advantage is ploted in Fig. 1 as a function 3 200 4
of n and k. It is clear that A, increases very rapidly g oy *
by the increase of the size n, if the nurber of . .
iteration in the optical-hybrid processing scheme are £ '] .
much larger than those for the digital processing, 1484
while in reality they will be approximately the same 1 k=1
for the same problem conditions. & 100 k=10
- . . k=20
g ..P . .
- 4 (] .
8 20 4 [ . *
'S PV LEEDOE LD LA — ~r
[ ] L J [ ] . 100 00 1% 1

MATRIX SIZE, n
Fig.l The operation advantage,
in Eq. (4) plotted v8. n in terms
of k=1,10 and 20.
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1I1I. Convergence of the solution

The block diagram of the optical-hybrid processor is shown in Fig. 2. The solution of the linear
algebraic equation v.ull be done optically using thg method introduced by Cheng and Caulfield4. The question
of the cmvergence in discussed in Cheng and Caulfield paper and it is found that if the matrix has positive
eigenvales than the solution will converge regardless of the size of the m¢. rix. This simply applies to step
c) OF T= PROCEDURE OUTLINED IN SECTICN II. We turn next to the total process.

LED x A
ARRAY ~
) PHOTODIOOE
< - &y
\ —
~ - \-/
~
<L
Z - “F
/ 2+
N4
DIGITAL
L AD M coipurer /A

Fiy.2 Systaa layout of the optical-hybrid processar.

In this section of the paper we present a numerical analysis of the convergence of the solution and its
deperdence on the condition nutber of the matrix. The condition number of the matrix A is defined as

Ryt (16)

where! -!| is the norm of the matrix. The condition number is a measure of the accuracy of the A x = b
solutiors. The larger the condition number the less accurate the result achieved with any fixed accuracy
computer. In this paper we report a simulation of the system shown in Fig. 2 by a camputer algorithm to study
the corrsergence of the solution of the linear equation. The camputer algorithm simulates the analog optical
processcr and the electro~optic 1/0 devices in such a way that allows us to control the errors occuring in
represerting the matrix oy an optical mask, and also the error in reading the photodiode voltage and in
convert.ng the input in the system to light by the LED's. To sunulate the experimental envirament we have
used a Gaussian randam number generator to generate the error signals.

The curve shown in Fig.3 is the result of a simulation experiment for the optical-hybrid processor with
the following charactaristics: The matrix A can be represented by an optical mask ( a photographic film or
a soatial light modulator) with an error of stadard deviation of 1% of the maxumm coefficient of the matrix.
The vec=or x can be reac with an error of standard deviation = 1% of tne maxumm element of the vector x,
also the error standard deviation in representing b by the photodiode is 1%. From Fig.2 we see that the
solutions converge with an error less than one milTionth ( or any other accuracy) even for condition number
500. For condition numbers less than 250 the number of iterations required are less than 20. In order to
guarantee convergence with 1% accuracies, we must restrict matrices to condition numbers less than 50.

XK(A)=]|A]}

10 study the effect of the error in representing the matrix by an optical mask on the number of itera-
tions to get the solution within 10™° accuracy, we have changed the standard deviation of the error in
representing the matrix over the range from 1% to 30% for a condition number 150 and we calculated the number
of iterations required for each case. The relatioship between the number of iterations and the standard
deviat.on of the error in representing the matrix is plotted in Fig.4. As the error increases the number of
iterations increase in an almost linear way. Even for an error of 10V in representing the matrix, the
solutian still converges. This intresting result proves that even by using inaccurate optics,optical-hybrid
processor can still solve the linear system of equations very accurately
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The condition number is one of the determining factors of the speed of convergence of the solutions as
can be seen in Fig.4. Smaller cordition numbers yield faster convergence of the solution. In searching for a
way to improve the condition number of a given matrix, we found one way of doing that is by normalizing the
matrix in the following manner

2 .
2t a2, (17)

2 2
a,, =a, / a, +a;, e |
wher a. . 's are the coefficients of the matrix A. This normalization decreases the value of the conditicon
nurberiJof the matrix which in turn increases the speed of the convergence process. Fig.5 shows a plot of
the condition number before and after the normalization of the matrix, fram which we can see an improvement in
the condition nunber after normalization.

30004

20004

lo0ul

K(A) AFTER NORMALIZATIQN

0

i A A
0 1000 2000 3000 4000
K(A) BEFORE 'NORMALIZATICN
Fig.5 The condition number of the matrix after it
has been normalized is plotted versus the
original condition number.
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IV. Conclusions

The optical-nybrid matrix processor discussed in this paper have shown very pramising results, it ig
clearly very campatable in both speed and accuracy with the digital processor, in solving a system of linear
equations. Tae advantage of the speea of the processor increases with the increase of the size of the matrj ¢
The analysis carried out in this paper is not limited to the solution of a system of linear equations but ig
applicable as well to other linear and ronlinear problems. Another interesting result presented here ig that
the optics winich is used in the processor can have a tolerence of 5 to 10% without sacrificing the accuracy

of the solution, althouwgh it is shown that the less error in both optics and electronics the faster the
solution will converge.
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ABSTRACT

An algorithm for computing the eigenvalues and the corresponding
eigenvectors of a matrix using the bimodal optical computer (BOC) is
presented. Accuracy of the solutions are similar to that of the
digital computer. The speed of the computation is compared to the
existing super ccmp''ters. The BOC is shown to have advantage in speed
especially for large size matrices. The advantage in speed increases

by the increase of the size of the matrix.




I INTRODUCTION

Eigenvalue problems arise in many physical problems. The
eigenvalue solutions ar2 often performed by iterarive methods using
di'gital computers. ! Solving this class of problems is a time
consuming. The time required for determining the eigenvalues and
eigenvectors increases with the size of the matrix. For matrices of
very high rank the digital computer bocome very slow. Optics appears
to be a natural candidate for tackling such a class of problems.
Previous work on optical eigenvalue processors offers potential
accuracy problems. 2:3:4

In this paper we introduce a method to determine the eigenvalues
and their corresponding eigenvectors for a positive definite matrix
using the bimodal optical computer (BOC). 3’® The accuracy of the
solution is equivalent to that of a floating point processors because
of the hybrid nature of the BOC provided that convergence occurs at

all. The method is outlined in section II. The speed of the algorithm

is analyzed in section III. Conclusions are drawn in Section IV.

IT EIGENVALUE ALGORITHM

For an nxn matrix A the eigenvalues and the eigenvectors are given

by

-+ -+ .
Aei= \181,131,2,.....,1'1 (1)




i

where ) ,'s are the eigenvalues of the matrix A and e {'s are the
corresponding eigenvectors. In this paper we are going to consider the
case where the eigenvalues of the matrix are all positive, real and not

equal,i.e.

' ED IS W9 SIS V) JRMU B W T I (2)

There are many methods for determining the eigenvalue and
eigenvectors of a matrix. One of the powerful methods is the inverse
iteration method. */7 The inverse iteration method is outlined as
follows:

a) Assume an initial value for the eigenvalue )\, = q; and an
eigenvector z '°'. The assumption for the initial value of the
eigenvalue can be done using the Gershgorin circle theorem.

b) Then solve the system of linear equations
(A-q I) y 'P*Y? = 2P | p=0,1,2,3,..... (3)
where z 'P*1) = S (p+1) / ”;(pn)”q" (4)
| «+ lle is the infinite norm, ® and I is the identity matrix.

As proy ‘P'=e and 1/ [ly ‘P o= \i-q ;. ()




Of course other norms will work and even work somewhat better, but the
infinite norm is very easy to calculate.

The time consuming operation in this method is solving the system
of linear equations in (3) fory ‘P*!’, This system of equations can be
solved using the bimodal optical computer (BOC) very rapidly relative
to electronics, especially for large n. ° The algorithm which we
propose in this paper for determining the eigenvalues and the
eigenvectors using the BOC is as follows:

a) Assume a value for q; and z '°' using the digital processor.

b) Solve the linear system of equations

(A=q I) §(1)=£(0) (6)

for y ‘!’ using the BOC.

c) Compute the norm |ly ‘!’ ||eand z ‘! using a dedicated digital
processor.
a) If |ly ‘' |- Iy *'® ||, ¢ ¢, where e¢is the error acceptable in

computing the eigenvalues and the eigenvectors, then stop the
iterations otherwise go back to step b).

In this algorithm we use the analog optics to compute an
approximate solution for the system of linear equations which is then
refined using the digital processor. This refined solution has the
digital computer accuracy but determined much faster. This
computation is done using the BOC which is shown in Fig.l1. The

convergence of the solution of the system of linear equations using




.
|

the BOC is discussed in the paper of Abushagur and Caulfield. ®

III Speed of the Algorithm

In this section we present a comparison between the speed of the
digital computer in determining one eigenvalue for the matrix A
to that of the bimodal optical computer.

The time required for doing one iteration of the procedure outlined

in Sec.II using the digital computer is?®

Tp= ( 7n? A4)T,,, (7)

where T p; is the time required for one digital operation. The time

required to do one iteration ,T, using the BOC is given by

To= [Ty, + 2n(n+2) Tp,] Iy (8)

where T ,, is the time required to solve the system of linear equations
by the analog processor and I jis the number of iteration required in
refining the solution of the system of linear equations using the BOC.
For a clear advantage in speed for the BOC over the digital computer we

need to satisfy the following condition.

Tp )) To (9)




Or,

([ 7n%4 - 2n(n+2) T o] /L) (Tpy My )) 1. (10)

EqQ. (10) can be rewritten as

Ap. Ap)) 1. (11)

where A =T ,,/T, and A =[7n3/4-~2n(n+2)I 4] /I (. (12)

Tp, and T,, are independent on the size of the matrix. For a rough

comparison

T,z 2 1Sec, (13)
and

Tpy= 1 wsec, for a typical microcomputer and, (14)

1 nsec, for a CRAY2. (15)

"

If we substitute from Egs. (13) and (15) into Eq. (11) the condition for

the advantage in speed for the BOC over the CRAY2 will be

A,)) 2000 . (16)

InFig.2 A ;A ;is plotted as a function of the size of the matrix nusin

Tp, of the CRAY2 computer. It is clear that the BOC can have an

advantage of speed over the CRAY2 if the size of the matrix is in the




range of 50 or larger...This advantage in speed increases by the
increase of the size of the matrix. Which makes this method very

attractive for such a class of problems.

IV CONCLUSION

A new method for solving the eigenvalue problem using the bimodal
optical computer is presented. It is shown that for a well conditioned
matrix the solution for the eigenvalues and eigenvectors can be
achieved much more faster using the BOC than the existing
supercomputers. This advantage in speed becomes very clear for large

size matrices.
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Fig.1

Fig.2

FIGURE CAPTIONS

Block diagram for the bimodal optical computer (BOC)

for solving the system of linear equations Ax=b.

The speed advantage A, A; for the BOC over the CRAY2

in solving the eigenvalue problem.
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for solving the system of linear equations Ax=b.




l’

‘warqoad anteAuabia ayy buratos ur

ZAYYO ®y3 I9a0 D08 9yy 103 !'v vy sbejueape peads syjy z-bra

T ‘w218 XIHLVR
00S ooy oog 00z Qo1 0

- 0l
— 0C
- 0%
- O

- 0S

ly dy

(spuosnoyl)

- 09
- 0L
- 08

- 06

001




SOLVING SYSTEM OF LINEAR EQUATIONS
USING THE BIMODAL OPTICAL COMPUTER
(EXPERIMENTAL RESULTS)
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University of Alabama in Huntsville
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ABSTRACT

Hardware and software design of the Bimodal Optical Computer (BOC) and its
implementations are presented. Experimental results of the BOC for solving a system of linear
equations Ax = b is reported. The effect of calibration, the convergence reliability of the BOC,
and the convergence of problems with singular matrices are studied.

LINTROD ION
Analog optical systems are becoming very attractive in the area of sifnal processing because
of their ability to process in parallel two dimensional data very rapidly. However, analog optical
systems have low accuracy. BOC &1—4] solves this low accuracy problem, by using a combination
of both analog optical system and digital processor.

In this paper we present experimental results using BOC for solving systems of linear
equations. In Section 2 a comparison between astigmatic optics and waveguides based algebra
processors is presented. The hardware and the software design of BOC is in Section 3. Section 4
contains the experimental results of the BOC for solving a system of linear equations. The
conclusions are in Section 5.

2.ASTIGMATIC OPTICS AND WAVEGUIDES BASED ALGEBRA PROCESSORS

The analog optical system can be applied in many applications. This paper concentrates on
solving a system of linear equations. Goodman [5] has introduced an astigmatic processor to
perform matrix vector multiplications, which can also be used in a system of linear equations
solver. However, the main problem that faces the arrangement in Fig. 1 is aligning the
components, to insure a uniform light distribution along the matrix plane.

Waveguides can be used to build optical algebra processors. By using waveguides, the
optical system can be made compact, and its alignment will be much easier than that of the
astigmatic system. The distribution of the light across the waveguide is plotted in Fig. 2, which
shows that the light is almost uniform along the waveguide. From the practical standpoint
waveguides are more reliable to use in these systems than the astigmatic optics.

SPIE Vol. 936 Advances in Opticsl Infc-mation Processing Il (1988) / 31§




BOC DESIGN (HARDWARE AND SOFTWA
3.1 BOC HARDWARE DESIGN

The BOC hardware has three main parts as shown in Fig. 3. The optical system, the
electronic circuit, and the digital processor. The optical system consists of the fully parallel
matrix-vector multiplier. Light from the LED's representing .he x components are spread
vertically by planner waveguides onto the columns of the matrix mask. The transmitted light is
summed row wise by using another set of planner waveguides and detected by photodiodes which

represent the output vector b.

The electronic circuit acts as a feedback loop to correct for the input light of the LED's.
until a solution is reached. The solution x will then be read and stored by the digital processor.
Fig. 4 shows the electronic circuit used for the feedback loop.

The A/D and D/A conversion from and to the electronic circuit are performed by the digital
processor.

3.2 BOC SOFTWARE DESIGN

The BOC software controls the Input/Output operations. Both the matrix A and the output
vector b are read and stored by the digital processor. Tue vector b is then converted to analog
voltage by a D/A converter, and it is assigned to the different ports of the electronic circuit. The
analog optical processor solves for an approximate solution due to its inaccuracy. The digital
processor reads and stores the approximate solution, x° through the A/D converter, then it
calculates the residue vector, [, as,

r=b-Ax®=A(x-x")=AAx (1)

Multiply Eq. (1) by a scalar 8 to make use of the whole dynamic range of the system, so
Eq.(1) becomes,

st=A(sAx) (2)

If the residue is not small enough, the system of linear Eq.(2) will be solved for Ax using the
analog optical processor and,

5 =x0+4x (3)

A new residue will be found for x1. The iteration process is continued by solving Egs.(1)
through (3) until a satisfactory solution is reached.

. ENTA T

In this section we present the experimen.al results for solving a system of linear equations
Ax=D using the BOC,where A,b, and x are all positive.

The Log of the error and that of the residue are plotted versus the number of iterations. The
error and the residue are defined as,

Error= ||(x-x%)|1/11x| (4)
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Residue=||*{] (5)

Where ||.]|, is the Enclidean norm, x is the exact solution, xk is the ktb iteration solution,
and rk is the kR iteration residue.

Since we are dealing only with positive numbers in this paper, we used the absolute value of
r to solve Eq.(2), then we set:

;(n+1)=5(n)+A3 (6)

when all the components of £ are positive. And
£(0+])=(8) g (7)

if all the components of ¢ are negative. We reject the iteration when the components of r have
different signs and take the previous one. By rejecting some iterations we are actually rejecting
some corrections. This procedure slows down the convergence process.

In all the experiments performed, the iteration process is stopped when a 16 bit accuracy is
reached. Fig. 5 shows that the BOC started with almost 30% error and it needed 6 iterations to
converge to 16 bit accuracy. In Fig. 6(a) BOC started with almost 110% error, and the number of
iterations needed was 21. Fig. 6(b) shows the Log of the residue as a function of the number of
iterations. The fluctuations depicted by Figs. 6(a) and (b) is due to the rejection method used in
the experiments.

4.1 EFFECT OF CALIBRATION

The analog optical system error is a major factor in the rate of convergence of the BOC. If
that error is rec%uced, then the convergence is much faster. In order to illustrate this, the same
problem has been solved twice with two different accuracies of the optical system. The analog
optical system's error in the first time was 50%, and it was 30% in the second time. Twenty one
iterations were needed by BOC to converge to the 16 bit accuracy for the first case. For the
second case the number of iterations was refuced to 12. These results are plotted in Fig. 7.

4.2 RELIABILITY OF THE SYSTEM

System reliability for convergence have been tested and verified by solving the same problem
several times, under different conditions. Results show that when the BOC is used, to solve a
problem several times, the convergence rate will not be exactly the same for all the cases.
However, the number of iterations needed by the BOC to converge to a certain accuracy is almost
the same. Fig. 8 shows three different paths of convergence for the same problem. The BOC
needed 13 iterations in the first run, 14 iterations in the second, and 11 in the third.

4.3 SOLUTION CONVERGENCE FOR THE SINGULAR MATRIX SYSTEM

Solving a system of linear equations with a singular matrix A is one of the problems that
cannot be solved using conventional digital computer techniques. Singular matrices have a
condition number equal to infinity, so their inverse does not exist, also they have infinite number
of solutions. However, the BOC can be used to solve such systems (6]. The BOC converges much
faster when A i3 singular, because a nonsingular matrix will have a
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unique solution. Due to the infinite solutions that a singular matrix has, the BOC produces
different solution each time we try to solve the same problem again. Fig. 9 shows the BOC

convergence for a singular matrix.
5.CONCLUSIONS

The BOC system was built and experimentally tested. The experimental results show great
reliability of the processor in solving systems of linear equations. Overall 16 bit accuracy ot the
hybrid system was achieved with an analog optical system of 30% to 50% error. Higher accuracies
o{ the solution can be obtained by increasing the number of iterations. The BOC also
demonstrated to solve systems of linear equations with singular matrices.

We are considering ia fuiure work, bipolar numbers, complex numbers, and using SLM for
the matrix mask.
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APPENDIX B
MASSIVE HOLOGRAPHIC INTERCONNECTION

The basic concept was described in late 1987 (Appl. Opt.
26, 4039). An extension soon followed (Lasers & Optronics,
1989). This, in turn, was followed by a detailed analysis of our
concept and 1988 reinventions of it in the U.S., England, and
Korea (Appl. Opt. 28, 311). A book chapter on this subject is
now under preparation.
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H. John Cauifieid

University of Alabama in Huntsville, Center for Applied
Optics, Huntsville, Alabama 35899.

Received 16 April 1987.
0003-6935/87/194039-02$02.00/0.

© 1987 Optical Society of America

While full optical interconnects of an N X N input signal
array to an N X N output signal array through N* weighted
interconnects is an important goal for optical artificial neural
systems (ANSs), methods for doing this are rare. Goodman
et al.! fully connected an N X 1 array to a 1 X N array.
Sawchuk? has suggested a fixed N* interconnection method
using replicated holograms for optical cellular logic. This
works in principle but has extreme space-bandwidth re-
quirements for large N. Sawchuk has described a 3-D dy-
namic interconnection network for interconnecting 2-0 N X
N arrays in parallel computing, but this network does not
have arbitrarily variable weights.3 I hope to show a simple
optical N* interconnection method which uses only one non-

critical lens, an N X N reflective spatial light modulator and -

a beam splitter as components.

It is convenient to think of the N X N input array as a
matrix A with components ai;. Likewise the output isan N
X N array B with components b;;. These are interconnected
by a 4-D tensor T, i.e.,

B=TA (§))]
Equivalently,

b, = ZZ T jna (2
*

Let us donote by T;; the N X N array of T, elements
arranged in the same way as the a,; elements. That is, the
tensor T can be thought of as N? different N X N weight
arrays of the form T, where T, is an N X N array of T
elements needed for Eq. (2). Dropping the subscript k! from
T\xi to Tij is done for clarity in the following.

Figure 1 shows the basicscheme. The A matrix is inserted
at the right side into the optical system via a reflective spatial
light modulator (SLM). An N X N hologram array (which
may be so large that it needs to be demagnified by relay
optics before use as shown in Fig. 1) is illuminated by a
reconstruction beam and provides the N?T,, arrays. In Fig.
1, we see that the T, arriving at the reflective SLM are N?
products of the form T,yaw. These are collected in the B
plane (the image of the hologram array).

In practice it may be necessary to make minor modifica-
tions on the apparatus of Fig. 1. The hologram array, SLM,
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) INPUT ARRAY
A
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s

RECONSTRUCT ION / NKN HOLOGRAM \REFLEUM
BEAM ’ ARRAY v \ LM
NXN OUTPUT DATA “ FIELD LENS
ARRAY B 3 .
= J

POSITION OF >,

Figure 1. Configuration of a parallel optical interconnection be-
tweenan N X Ninput array and A and an N X N output B. An N X
N array of holograpms each containing and N X NV mask array is
illuminated in parallel to produce the N* interconnection.

and detector array may be of different sizes. This requires
relay lenses to magnify or demagnify one or more of these to
achieve the Fig. 1 configuration or some simple variant of it.
For example, the hologram array may be quite large. As-
suming a 2-mm diam hologram to store a 1000 X 1000 T,

mask, we need a 2- X 2-m hologram array to store 10"

weights. This certainly precludes some uses. A 500 X
500T,, mask needs a 1-mm hologram, and we only need a 50-
X 50-cm array to store (500)¢ = 67.25 X 1019 weights. Fresnel
diffraction considerations make it desirable to keep the holo-
grams larger than or equal to . mm. Thus if we drop to a
128 X 128T;,, we need a 12.8- X 12.8-cm array to store the
(128)% = (27)4 = 228 X 2.5 X 10® weights.

To record each subhologram we must reverse Fig. 1. A
point source at the i, j position in the B plane illuminates the
SLM. The T, pattern is written onto the SLM. A coherent
reference beam conjugate to the Fig. 1 reconstructing beam
allows the subhologram to be recorded.

Optical parallel N* interconnections ar= seen to be quite
straightforward. No technology breakthroughs are required
to achieve N = 103 or N* = 10!2. Recording the master
hologram as a whole or in parts may prove slow, but mass-
produced copies can be made quickly and inexpensively.

This work was sponsored primarily by the Department of
the Navy under contract N00014-86-K-0591.
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RESEARCH

A Breakthrough For Optical Neural Nets

Figure 1. One mriilion weighted, parallel interconnections for optical neural-net

computing tasks can be accomplished with the above design. Data input is achieved
with an N xX N SLM input array. Each element of the input array is combined with an
Nx N weighted array from an N x N holographic array into an N x N output array.

Since the advent of the laser, a quiet
struggle has been going on between optics
and electronics. For a century it seemed
that Maxweii’s equations were the only
laws these (wo fields had in common.
Now, however, diode lasers and thousands
of kilometers of fiberoptic cable are stag-
ing a virtual takeover in telecommunica-
tions, erasable optical disks are edging in
on conventional magnetic storage, and
even the haliowed halls of electronic com-
puters are being infiltrated by new opto-
electronic techniques.

The latest optoelectronic coup is being
staged by H.J. Caulfield, director of the
Center for Applied Optics at the Univer-
sity of Alabama in Huntsville. Caulfieid
has put forth an ‘‘existence proof®’ that
he says shows, ‘‘that there is a vital task
in computing that optics can do now and
electronics can never do.’”” What's more,
he says it can be done with technology that
has been around for twenty years. If true,
this is the breakthrough that optical com-
puting has been waiting for. As Caulfield
puts it, ‘‘[ chink what we’re seeing is the
real birth of optical computing.”’

{n an interview with L&O on August 19,
Caulfield revealed that optical techniques
offer the only possible solution to the
massive, parallel, weighted interconnec-
tions of neural networks. Neural networks,

22

or ‘‘neural nets,’' form the foundation of
a computer architecture designed to mimic
the human brain by forming millions, even
trillions, of individual, parailel intercon-
nections. As with neurons, all these inter-
connections could be individually weighted
and connected to an equal number of out-
puts. Such an architecture was developed

| think what we're seeing
is the real birth of
optical computing.”’

by Warren McCullach as long ago as the
mid 1920s, but has only recently been
studied as a possible solution to highly
complex, repetitive computing problems
requiring high-speed solutions, such as
pattern recognition.

Caulfieid used reductio ad absurdum to
prove the futility of making 10'2 parallet,
weighted interconnections electronicaily.
He explained that since electrons inter-
act with one another, the connections
would all have to be made with individual
“‘wires'’ or electron carriers. Submicron
carriers an silicon chips have just become
possible, so it is not inconceivable that
such carriers could be made and packed

together as closely as | micrometer by th
next century. For 10'? connections, th
wires would have to be packed together i1
a two-“:mensionai array 1 x | meter, anc
then rearranged somehow to form the
interconnections, which, according tc
Caulfield, would require wire lengths of
10 meters or so. That leads to a 10-m’
conductive mass with bothersome induc-
tance and crosstalk.

Furthermore, even if the conductivity
(weights) of all these wires could be set
independently with no space, time, or cost
penaity, each wire must be connected to
an input and an output. When added to
the interconnections, this leaves 4 x 10'%
attachments to make. [f 4,000 connections
could be made every second, it wouid take
10° seconds to complete the task, which
adds up to something over 25 millennia.

In a paper submitted to Applied Optics,
Caulfield suggests an optical method of
accomplishing the same thing. The tech-
nique makes use of holographic technology
from the 1960s—page-oriented holo-
graphic memories. Figure 1 shows how
it works.

To produce 104 optical interconnections,
input data is encoded onto a 10°x 10®
array in the form of a transmissive spatial
light modulator (SLM); although a reflec-
tive SLM can also be used. Each element
of the the SLM input ' -ay can be assigned
a set of weighted _alues by means of a
large holographic array.

The holographic array is 10’ holograms
high and 10® holograms wide. Each of
the elemental holograms in this array is
made in such a way as to produce a
10° x 10} pattern onto the 10° x 10 SLM
input array. So the holographic array
responsible for assigning the weighted
interconnections can be thought of as N2
different N x N weight arrays, and can
be represented by a four-dimensional
tensor T,m.

When the weighted arrays of holograms
are reconstructed with a reference beam
and imaged onto the 10% x 10? SLM input
array, a 10% x 10’ output array, B, is pro-
duced. B = TA and has elements

b\" = 2 thlall'
x4
A 2 x 2-meter holographic array consist-
ing of (10°Y holograms, with each 2-mm-

diameter hologram storing a 10* x 10®
weight array, would yield 10'? weighted

LASERS & OPTRONICS
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interconnections when combined with the
10° x 10° SLM input array.

It is impossible to fathom the effects this
development will have on optical neural-
net design, but Caulfield has managed to
combine mindboggling complexity with
stupefying simplicity. He suspects that the
most time-consuming part of his optical
neural-net design will be learning how to
weight the input array for each optical
computing task. This, he believes, could
take months to years and require the learn-
ing capacities of traditional electronic
computers. Once a master weight array is
produced, however, neural-net operation
time should be in the realm of millisec-
onds, and successfully ‘‘programmed’
master holograms could be cloned in sec-
onds for mass production.

*‘The role of electronics, with its great
flexibility and accuracy, is learning. The
role of optics is doing what electronics
learns,’* says Caulfield. *‘Brains use the
same equipment for both tasks, but why
should we? We should let optics and elec-
tronics do what each does uniquely well.
The war between optics and electronics is
a foolish one. They each have a major
role. What we have done is {to] show, in
one vital area, what those roles are.’”

—Tom Higgins

Can Superconductors
Replace Fiberoptics?
Could the new high-temperature super-
conductors provide much greater trans-
mission bandwidth than fiberoptics for
long-distance communications? The recent
demonstration that such materials can
transmit picosecond pulses has some ob-

The experiments are clear
indication of high potential
bandwidth for the new
superconductors.

servers oeiieving so. However, others are
more cautious, ncting that the two key
experimeits sent picosecond pulses through
only five-millimeter lengths of thin-film
superconductor.

The two experiments were announced
nearly simultaneously. One was by a :eam
from the University of Rochester and
Cornell University, the other by a team at
the IBM T, J. Watsor Research Center in
Yorktown Heights, N.Y. Both were work-
ing with thin films of yttrium barium

copper oxide, the best-known member of
the family of new materials that are super-
conducting at temperatures of 90 or 100
Kelvin. Both passed picosecond-domain
electrical pulses through S-mm lengths of
superconducting film and could detect no
pulse distortion or dispersion over that
scale. Both involved researchers well
known for their work on ultrashort opti-
cal pulses.

However, the two experiments differ in
detail, and the two groups differ radically
in how far they are willing to extrapolate
the results. Gerard Mourou, director of the
uitrafast science center at Rochester’s
Laboratory for Laser Energetics, pre-
dicted, ‘*over distances of miles, lossless
superconducting transmission lines with
100 times the capacity of optical fiber
systems could be developed.’* Much more
cautious was Alex Malozemoff, research
division coordinator for superconductivity
at IBM, who said, ‘‘I don’t think we've
yet tested the superconductors in a regime
to talk about long-distance transmission.”’

The thin-film superconductor used in
the Rochester-Cornell experiments was
deposited on a zirconium-oxide subsirate
by Robert Buhrman, professor of applied
and engineering physics at Corneil. The
submicrometer film was etched to form a
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Massive holographic interconnection networks and

their limitations

Joseph Shamir, H. John Caulfield, and R. Barry Johnson

Fundamental and practical limitations to be encountered in the implementation of massive free space optical
interconnects are discussed in detail. and some improved architectures are proposed. The long term
optimum design uses currently unavailable large arrays of laser diodes. An interim solution, using available
spatial light modulators, is shown to be capable of storing ~10'° bits of information and performing ~10!!

interconnections/s.

{. Introduction

There is an increasing interest in massive optical
interconnection networks for incorporation in commu-
nication and signal processing systems.!-¢ Optical ar-
chitectures are particularly attractive for the imple-
mentation of interconnection networks with extremely
high comnlexity that are impractical with convention-
al electronic systems. Neural networks’-?? that are
based on massive weighted interconnections are good
examples of such systems. Many of the architectures
considered in the above-mentioned references employ
the extensive interconnectivity available in free space
propagation of light waves. Only a few of these publi-
cations have, however, seriously discussed the actual
feasibility of large scale implementation.21011 A more
commor: attitude is the description of a system archi-
tecture witL a statement on the expected performance.
Sometimes a demonstration is presented with a small
array of input data, but, in many cases, the limitations
imposed on the upscaling possibilities are ignored.
Several limitations stem from fundamental physical
processes such as diffraction and coherence, while oth-
ers are due to technical difficulties such as the angular
dependence of spatial light modulators (SLMs) and
the actual shift variance of real spatial filters.2

The main objectives of this work are the analysis of
the degradation factors that limit the performance of
practical interconnection networks and the derivation
of fundamental and technical constraints on the resl-

The authors are with University of Alabama in Huntaville, Center
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ization of an actual physical system. The analysis is
based initially on a recently proposed architecture,
and two additional configurations are introduced with
an attempt to overcome some of the difficulties. Al-
though we treat here a very specific application, the
results are relevant to a considerable variety of other
optical processing architectures that have been pro-
posed in the past or will be proposed in the future.

In the next two sections, we describe the anticipated
performance of an ideal system disregarding all con-
straints that will be analyzed in Secs. IV-VII in detail.
Part of this analysis is based on a more exact mathe-
matical description of the whole process given in Ap-
pendix A for a scalar paraxial approximation. For
most parts of the analysis we assume that the system
must perform all possible interconnections among all
the channels available and base the calculations on
worst case conditions. Itisto be expected that if these
worst case conditions are replaced by some statistical
average, the derived constraints may be appreciably
relaxed. Furthermore, in many applications one does
not need all the possible interconnections, and then
the system may be divided into subapertures In that
case our estimated constraints relate to the largest
subaperture and the complete system may become
much larger.

Two new architectures are introduced in Sec. VIII
with an attempt to reduce the constraints derived for
the original architecture. In Sec. IX we perform a
general analysis for the derivation of the laser power
requirements, and in Sec. X a detailed cas~ study is
given with the derivation of design parame.ers for an
actual system that may be implemented in practice
with presently available devices. This system consists
of 256 X 256 input and output arrays with 2564 weight-
ed interconnections capable of performing 10!! inter-
connections/s. Important concluding remarks, relat-
ed to the actual implementation of an interconnection
network, are given in Sec. XI.

15 January 1989 / Vol. 28, No. 2/ APPLIED OPTICS n




il. Ideal Performance of Basic Architecture

The basic configuration, shown in Fig. 1, is the trans-
missive version of the reflective system described in
Ref. 7. Itconsists of a hologram array of linear dimen-
sions H containing Ny X N, holographic optical ele-
ments, an SLM of size S with N; X N, pixels sand-
wiched between two lenses with respective focal
lengths f, and f», and a detector array D with Ny X Ny
detector elements. The ijth hologram in the array is
imaged by the double-lens configuration onto the ijth
element of the detector array. This hologram diffracts
light from a reconstruction beam with an efficiency ¢,
toward the kith pixel in the SLM. The same pixel
receives a weighted fraction of the light diffracted also
from all other holograms, but, assuming a linear inter-
action in the SLM, these are separated again on arrival
at the detector array. Thus, ideally, each detector
receives the sum of all the weighted beams just from a
single hologram element. Mathematically, if the pow-
er transmittance of the kith pixel in the SLM is ax;, the
total power received by the ijth detector will be

b:/ = z tuklakl' §Y)
al

where, for the time being, coherence effects have been
ignored.

Performance degradation due to coherence is just
one of the factors that is discussed later along with
some other effects that limit the scale-up capability of
this and many other architectures. This system in its
ideal form may be viewed either as a matrix-matrix
multiplier of a 4-D matrix by a 2-D matrix or as a
vector-matrix multiplier with vectors of Ny X N, di-
mensions,

\T'A =B. (2)

The elements of the input vector (or matrix) are
introduced by the transmittance of the SLM pixels
with the hologram providing the fixed matrix |7
The output vector is read out from the detector array.

Alternatively, we may consider this an interconn.c-
tion network with N? chanrels that are interconnected
by N? X N} weighted interconnections that are hard-
wired for a given hologram array.

. Hologram Recording

To implement the above zichitecture one must also
devise a system for recording the required large holo-
gram array. Within the present state of art the practi-
cality of computer generation with electron-beam
writing appears to be out of the question for these large
arrays. Thus one must resort to optical recording,
preferably with computer assistance.!%!! Several pro-
cedures may be envisioned for the implemextation of
the hologram recording process. The most obvious of
these processes is based on the same opticai >ystem as
the interconnection network itself (Fig. 1) where each
element of the detector array is replaced one at a time
by a point source. A useful realization of this point
source may be the endface of a single-mode optical
fiber that can be easily positioned and aligned with a
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Fig. 1. Basic configuration for an N* interconnection network: H.

hologram array illuminated by a reconstruction beam R: 3LM. spa-

tial light modulator between two lenses L, and L with their respec-

tive focal lengths f, and f; D. detector array or an array of nonlinear
optical devices.

computerized robotic arm. To record the ijth holo-
gram this source is positioned at the location of the ijth
detector pixel, oriented for optimal illumination of the
SLM, and imaged onto the hologram by the two lenses.
The SLM, sandwiched between the lenses, writes the
desired interconnection pattern. This special lens
configuration is useful to keep all incident ray angles
on the SLM constant for a given hologram allowing for
adjustments to take care of the angular variation of the
SLM transmission characteristics. The constraints
related to the operation of SLMs are discussed in more
detail later. To attain small repeatable high quality
holograms, a random phase plate over the SLM may be
useful®* as discussed further in Sec. VI. The overall
process of recording and reconstruction is mathemati-
cally evaluated in Appendix A within the paraxial ap-
proximation for an ideal case using operator nota-
tion.25-%7

In the above recording configuration it was assumed
that an oblique reference beam, conjugate to the one
indicated on the figure, is incident on the hologram.
Alternatively, one may use a point source reference
situated on the optical axis at the SLM plane. This
will allow an axial reconstruction beam resulting in a
reduced bandwidth requirement for the holograms
and a simpler reconstruction configuration. The pen-
alty for these benefits is removal of the central portion
of the SLM and the introduction of aberrations in-
duced by spherical-wave recording and reconstruction.

IV. Semiquantitative Constraint Estimation

The exact analysis of the physical processes involved
in the operation of the proposed architecture is quite
complicated and outside the scope of this work. Nev-
ertheless an appreciable insight can be obtained by
evaluating the diffraction effects in the scalar |-~raxial
approximation. In Appendix A we present a Fourier
optics description of the complete process starting
from the hologram recording stage and ending at the
detection of the output vector. Keeping in mind the
results in the Appendices, in the present section we use
a somewhat different approach thet allows us to take
into account in a semiquantitative way effects induced
by off-axis propagation.

To obtain an estimate on the imitations imposed on
the system of Fig. 1 we consider first the diffraction
effects occurring while light is propagated from each
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hologram in the array toward the various pixels of the
SLM. For proper performance we must require that
most of the light addressing a pixel in the SLM should
be incident on this pixel, and only a negligible fraction
will be spilled over to other pixels.

We denote the linear dimensions of the respective
pixel sizes in the hologram array, the SLM and the
detector array by pn, ps, and pg, and the respective
center-to-center distances of the pixels by d, d,, and
d4. As discussed later, the center-to-center distances
are not necessarily equal to pixel sizes. With the pa-
rameters defined earlier we have the relations

N,=S/d; N,=H/d; N,=D/d, 3)

If we assume diffraction-limited performance with cir-
cular hologram elements, we may require that d, be not
smaller than the diameter of the first Airy disk ob-
tained by focusing an aperture, the size of the holo-
gram, onto the SLM plane. That diameter is

a=2442, 14)
Px

where r = f/cosf is the distance between the ijth holo-
gram and the kith SLM pixel (see Fig. 2). We also
must consider the elongation of the spot due to the
inclination of the beams incident on the surface of the
SLM. In principle we should also consider the cos'§
flux density falloff, but we assume that this may be
Precompensated for during the hologram recording
stage by modifying the assigned weights.

The optical configuration with the hologram in the
focal plane of the lens ensures that ail beams from a
single hologram are incident on the SLM approximate-
ly at the angle at which the central pixel is addressed.
Thus from Fig. 2 it is evident that the maximal value of
this angle 6., is obtained for the hologram situated at
the corner of the array and is given by

tanf,,, = H {5)
v2fy

All beam spots for this marginal hologram will be elon-
gated by a factor 1/cosfmax. Incalculating the distance
r, larger angles should be also considered, but, to re-
duce the algebraic complexity, we take into account
only an average distance traveled by the various beams
emerging from this hologram keeping in mind that the
actual situation is worse. For this average distance we
may putr = f1/co88mes. With all these considerationsa
minimal requirement for pixel separation is given by

A
d, =244 M (6)

Py c08%0,,,
Solving Eq. (5) for f, and substitting into Eq. (6), we
obtain
A2

d, 2244
Dx 8in20,,.

' ]
d

O 8)
A ein26. . py

This relation may be regarded as the constraint set by
the requirement of diffraction-limited performance.

¥4

H

Fig. 2. Definition of geometrical parameters: A, hologram plane:

S, SLM plane or the detector plane in the modified architecture: r.

distance between the ijth hologram and kith SLM pixel. Polariza-

tion vectors P and P as well as the angle am,, and propagation vector
% are discussed later.

In its present form one may interpret it as a limitation
of the ratio H/py, for a given SLM (that is. a given value
of d,) operating at a given wavelength. From the
optical designer’s point of view, 0y, is determined by
the numerical aperture of the optical system. Howev-
er, as shown in later sections, additional constraints
should be considered. As a demonstrative example to
the meaning of relation (8) we assume the unlikely
angular limitation 6, = 45° (corresponding to an
f/No. of 0.7) and take A = 0.5 um, we need a pixel
center-to-center distance, d, = 173 um, to obtain a
ratio H/ps < 100. This means that in these conditions
one is limited to a hologram array of .V, X NV, = 100 X
100 elements unless holograms.are allowed to overlap
spatially, or alternatively an appreciable amount of
crosstalk is allowed. The number of elements in the
SLM, however, is not limited by relation (8), and if we
want to implement a system with input vectors of rank
N, X N, = 1000 X 1000 we need an SLM with S = 17.3
cm.

The limitations on the absolute size of the holograms
may be determined by considering the requirements
for space-bandwidth product or rather a quantity that
we shall call information content (IC). If the resolu-
tion of the holographic material is 1/ and it can record
&ndistinct gray levels, we obtain the approximate value

IC, = (Ef‘). 8. 19)

If the SLM has a gray level capability of g, levels, its IC
is

IC’. - ‘vzg', (10)
which should satisfy the relation IC, 2 IC, leading to

Pry L (11)
l IS

It should be noted here that, apart from material limi-

tations,  is also limited by the recording wavelength: a

holographic grating can never have its interference

pattern with spatial frequency higher than 2/), and in

most recording configurations one has { > . Continu-
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ing with our previous example with N, = 1000, taking
the limiting value [ = 0.5 um, and assuming gx = g,, we
obtain pp 2 500 um. Usually we shail need at least
twice this value to incorporate the hologram carrier
frequency for off-axis reconstruction. If a random
phase modulator is attached to the SLM, as proposed
in Ref. 24, the IC, increases, which necessitates an even
larger hologram.

This first-order estimation leads to severe limita-
tions on the number of elements that may be processed
in parallel using a single optical system. A more de-
tailed analysis is required to derive trade-offs applica-
ble to specific system design. For example, one may
consider partially overlapping of holograms to obtaina
larger number of holograms while still satisfying the
restriction on the ratio between hologram size and
array size {Eq. (8)]. One may also relax the crosstalk
limitations that will influence relation (6). On the
other hand, we must consider the deteriorating contri-
bution of coherence effects, aberrations, scattered
likgth, and performance limitations of SLMs.

V. Crosstalk Considerations

In the configuration of Fig. 1, crosstalk occurs on the
SLM plane and also on the detector plane. The light
from a single hologram is split into several beams of
various intensity, each of which is ideally focused into a
separate pixel of the SLM. These beams are modulat-
ed by the SLM and then converge to a single-detector
element. The crosstalk on the SLM plane originates
mainly from light injected into the kith pixel from
matrix elements ¢;;» addressed to different pixels with
k'l # ki, As long as the interaction in the SLM is
linear, the mixing of light from several holograms has
no effect at this plane but becomes important on the
detector plane where light originating from one holo-
gram leaks through to unintended detector elements.

To consider crosstalk over the SLM plane, we denote
by ¢, the power originating from a certain hologram
that may be incident on a single pixel due to leakage
from other beams that are not supposed to contribute
tothis pixel. One may state that the weight attributed
to this element for a certain interconnection is in-
creased by this value. However, since ¢, usually has a
statistical nature, we may consider it as the error as-
signed to the element of the interconnection matrix.
Thus, instead of having a well-determined weight mul-
tiplying each SLM element, we must include some
average bias level ¢,/2 and write

¢
Comt ™ bym + E' (tx1). (12)

T 3 error has several contributions that include dif-
fraction, aberrations, inclination factors, scattered
light, and coherence effects.

A similar effect may be observed on the detector
plane where ideally the light emerging from each holo-
gram should be focused into a single pixel. Denoting
the contribution of light power from other holograms
by ¢4 we obtain the value of the vector elements with
error,
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b:/-z[tx,n*%ﬂtl)]au/Z'#((—;)—"-(l2H. 13
&
where we noted the dependence of the error terms on
location and took into account the bias terms due to
the noise. Naturally these terms also depend on the
matrix and vector elements themselves. Thus the
above relation is essentially nonlinear in the matrix
and vector components. Thus one may only estimate
some maximal error values and possibly determine
their statistical nature for a given situation.

According to our design objectives, the dimensional-
ity of the detector plane should be equal to the dimen-
sionality of the hologram plane (that is, Vg = .V, al-
though not necessarily equal to V). Since our optical
system is essentially an imaging system between ‘the
detector and hologram planes, we have the geometrical
relations

f2

dd'f—dh' 14
1

f“)
D=—H. 113
h

In principle, we also have the relation

Ph= %Ph' (16)
where p;, is the image of p, over the detector plane.
However, because the reconstructed wavefront over p,
is the phase conjugate of the writing beam, the distri-
bution within p, will be quite nonuniform. Asa mat-
ter of fact, if px is very large and the SLM has unit
transmittance, the complete reconstructed wavefront
will be concentrated into the region occupied by the
source during hologram writing. As is evident from

.2 paraxial calculatior  ippendix A, if we have the
SLMinplace, accordir..  Zq.{A25), the power distri-
bution will approximately be (ignoring coherence ef-
fects to be discussed in the next section) that of a sinc-
function, the extent of which is determined bv the
SLM pixel size. If the hologram has a finite size, this
distribution will be widened by a convolution contain-

- ing the window function as derived in Eq. (A27). If

this window function is not too small, that is, it satisf* s
a relation of the form (8), we may state that the cross-
talk over the detector plane is generally proportional
to the diffraction spot size of the SLM pixel over this
plane. Using considerations similar to those leading
to Eq. (6), we may write for the power that spills over
the area of the detector pixel

\D ? -
s { —————§ - 7
(ddp, sm20mu)

where 6, ,, is the maximal angle in the detector plane.

If we define this angle in a similar way to the definitien
of Omasz, We have here too a geometrical relation

tand ., = % tané ... 118)

The above discussion indicates that the crosstalk

term at the detector plane and, according to the discus-




sion in the previous section, also the crosstalk term on
the SLM plane are both inversely proportional to the
SLM pixel size. Thus, to minimize crosstalk due to
diffraction one would like to increase p, as much as
practically feasible. However, if we intend to limit the
SLM pixel size to its minimal value according to Eq.
(6), we may substitute the equality relation of Eq. (8)
into Eq. (17) to obtain

phdsf'l Sin20mu 2 (19)
¢, x| —mm—m———— |}
47\ depyf, sin26,,,

where we used Eq. (15). For the crosstalk over the
SLM we may write a similar expression:

AH 2
x [ —————] . 2
“ (d,p,, sinZBm“) 20
Multiplying the last two equations we may write
f, ¢
egx | —————\H ) - (21)
dypf 3in28.,,

For relatively small angles we may also write with the
help of Eq. (18)

6oy« —i—-— NH | - (22)
frdp, sin29

This relation is quite interesting as it indicates some
possibilities for improving system performance by in-
creasing the SLM and detector pixel sizes and the ratio
fi/f2. Unfortunately, these parameters cannot be ad-
justed independently, and they must be considered
together in some optimization process.

To evaluate the order of magnitude of the crosstalk
errors we follow the analytical results of Appendix A
with some numerical calculations assuming rectangu-
lar pixels as shown in Fiig. 3. To evaluate the crosstalk
over the detector plane we may start from Eq. (A25)
and keep in mind that a similar procedure applies also
for the SLM plane. We may normalize the argument
of the sinc function to the value of its argument at its
first zero:

M

L, (23)
" 2p,

where a detector pixel size

-9y a M
Py = 2x4 3 (24
covers the whole central lobe of the sinc function. It
should be noted that this size is smaller than the one

used in the previous estimations.
If we illuminate the detector array with such a sinc
function centered on a detector denoted by 4 in Fig. 3,
'the detected intensity will be the integrated square of
the sinc function over the area of each detector ele-
ment. The curves in Fig. 4 are the calculated integrals
over pixels situated relative to A as the ones denoted by
B. The values are given as the percentage relative to
the integral over pixel A as a function of the normalized
pixel separation d4/p4 for three normalized values of py
with the middle curve (p; = 1) corresponding to the
value given by Eq. (24). As expected, the crosstalk
increases drastically if the interpixel distance drops

|Pd:
S]El=ER
Fig. 3. Layout of detector array.
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Fig. 4. Crosstalk percentage as a function of relative center-to-
center distance of detectors. Parameter is detector size relative to
central lobe o sinc function.

below the size of the central lobe, but there is an
appreciable crosstalk even for quite large separation.
The curves indicate that we do not gain much by
enlarging the detector elements much above 2x,. As-
suming that this is a good choice for the dimension of
the active part of the detector (py = 2x), we obtain a
calculated value for the crosstalk between two adja-
cent detectors of 3.5% if they touch each other (py =
dg). This value for d4 is technically not feasible, and
we rather take d; = 4x, with which we obtain a cross-
talk of 0.74%. The crosstalk to a more distant pixel (D
in Fig. 3) with its center at 8x is ~0.18%, while the
value for the nearest diagonally positioned pixel (C in
Fig. 3) isonly 0.075%. Assuming this arrangement we
observe a maximum of four pixels each contributing
0.74%, four pixels contributing 0.075%, and four more
contributing ~0.18%, each. Taking into account the
smaller contributions from more distant pixels, a max-
imum estimated crosstalk value is ~4%.
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As we have seen, due to the special structure of the
diffraction pattern from a rectangular aperture, the
crosstalk between diagonally positioned pixels is about
an order of magnitude smaller than between adjacent
ones. Consequently, a checkerboard configuration
may be advantageous for some applications even if this
requires a fourfold reduction in the number of pixels.
Naturally, even in this case we cannot forget the sec-
ond neighbors D that still contribute 0.18%, each lead-
ing to~1% combined contribution from the eight near-
est pixels.

The above last number for the fractional error ap-
pears quite affordable, but we may run into difficulties
even with this quantity. In general, we may define a
quantity ¢ that gives the fractional leakage from one
pixel addressed by a single channel into a neighboring
one. If the maximum possible power arriving to the
detector from a single channel is I, the crosstalk to a
neighboring pixel will be I¢;. If we have M such pixels
around each other pixel (M = 8 in the above example),
we obtain a maximum crosstalk from these pixels of
Mle¢;. Assuming that this contribution is the most
significant and we may neglect other contributions, we
shall obtain the maximal value of the crosstalk when
all N2 channels are addressed with full weight to all the
neighboring pixels:

(leg)mes = MNI¢,, (25)

which may become much larger than I even for small ¢;.
We shall return to this subject and discuss it further in
relation to the estimation of laser power requirements.
All the sbove considerations presume ideal perfor-
mance and alignment. One essential technical factor
to treat is proper alignment. If we have a misalighed
pixel it will be shifted on the curves of Fig. 4. For
example, according to the calculations with the above
configuration, the measured power for a pixel dis-
placed in one direction by 5% will be off by 1%.

V1. Coherence Effects

In Eq. (1) we assumed that the power contributed by
the different pixels in the SLM is combined incoher-
ently at a detector pixel. As is quite evident, this
assumption is incorrect since the holograms are illumi-
nated by coherent light and one must consider coher-
ent superposition. To do this we havetoe .'. e the
complete complex amplitude distribution a. the ¢-tec-
tor plane. As a first-order approximation fc* 3 co-
herence effects we ignore the crosstalk and start from
an ideal infinite hologram, recorded by a point source
which results in the expression given by Eq. (A25).
That relation gives, apart from a quadratic phase fac-
tor common to the whole detector plane, the complex
amplitude distribution over a single detector pixel due
to a single hologram. This relation is reproduced here
for convenience:

U= Zg,,,,h,,my(—d;m/f) sinc(xp,/M.yp,/M). (26)

mn

The various parameters are explained in the Appendi-
ces (we changed the dummy indices to avoid confusion
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with the wavenumber k = 2x/)\), and here we just note
that the ¢ and h factors are the amplitude transmit-
tances of the SLM pixels during the reconstruction
and hologram writing processes, respectively. Forour
discussion here the important factor in this expression
is the linear phase factor

¢(~d%./f1 = exp [ka (md.x + nd‘_\-l] . 27)

The power detected by the detector element is given
by

IL"IZ = z z gﬂlﬂhx/’ﬂfs’ﬂ’\hﬁi"l n

mn mn
X 8(=d%,, /NS, /) sinc’(xp,/ A f.ypy M. 128)

The terms in the double summation are the same for
both s'mmations. Therefore, the mixed terms occur
twice with the sign of the linear phase inverted. Thus
we may write

"l X s k]
IU"|? = sinc? ( p 1p—)

NN
X {Z gi\nhxz/mn + Z gmnh:]mngmnh:,.mn
mn

m<m .a<n

d?, -d,)-
x co{k ._""‘_7'.""_)_"]} . 199)

This relation gives the power distribution over the
detector plane for reconstruction with a single holo-
gram having infinite size. To find the actual detector
signal we must integrate over its sensitive area p,
Then the first sum will correspond to Eq. (1) if we put

ghizan Ry =t 130)

and we are left with tnc disturbing interference terms
of the second summation. Due to the integration, the
contribution of these interference terms is quite small
except for the smallest phase factors contributed by
nearly neighboring pixels. The worst case is a nearest
neighbor suchasm = m’,n = n’ = 1. For this case we
shall have to integrate over an expression of the form

, dd,
sinc (xp,/N.yp /N [a + 3 cos (7 x)] . 3N

where « and 3 are two constants determined by the
input vector and interconnection strengths. Since in
the derivation of Eq. (26) we have already extracted
the shift operator from the amplitude distribution [Eq.
(A22)], we assume here that the detector pixel is cen-
tered at (x = 0,y = 0}, where, according to the above
relation, the intensity is much higher than for the
incoherent superposition. The amount of this dis-
crepancy, after integration, depends on detector pixel
size py. If we take this size to cover the region up to the
first zero of the sinc function as in Eq. (26), we obtain
the first zero of the interference at
Y4

X, 'G: 132y




which satisfies the relation x, < py/4, and we have at
least one full oscillation period over the integration
length.

The actual net effect will be a redistribution of the
power over the detector area without much effect on
the total power. As a matter of fact, for this special
choice of parameters a larger fraction of the power is
concentrated around the detector center, which tends
to reduce crosstalk. If we calculate the integrated
power over the detector for this case we obtain 25%
more power concentrated on the detector surface.
However, considering the fact that the relation d, > p,
is always satisfied, the coherent contribution is much
less pronounced. Taking the parameters of the previ-
ous section, d, = 2p;, the difference between coherent
superposition and noncoherent superposition is only
0.2%. More distant pixels will contribute interference
terms of higher spatial frequency, which tends to re-
duce the uncertainty to a negligible amount. The
uncertainty in the detected value is also increased by
the fact that no prior knowledge is possible about the
relative magnitudes of the parameters « and 3.

An additional error source due to coherent illumina-
tion comes from contamination and irregularities in
the actual system. For example, a dust particle of
cross-sectional area having a fraction n of a pixel area
may scatter light of that fraction very unevenly. Thus
a fraction n of power may be removed from one pixel
and injected into another. A 10-um particle, common
to most laboratory environments, has an area of the
order of 0.3% of the SLM pixel area we derived in Sec.
IV. If we consider this fractional noise as a coherent
amplitude noise, it may amount to ~0.6% of local pow-
er uncertainty.

To complete this picture one must also consider the
fact that most contributions to the crosstalk error are
coherent with the signals, and for accurate analysis Eq.
(13) should be modified accordingly.

For the sake of brevity we considered in detail only
the coherence effects at the detector plane. We should
keep in mind, however, that similar effects occur also
during the hologram recording process and at the SLM
during reconstructioni. Although we assume linear
interaction with the SLM, a redistribution of intensi-
ties due to coherent superposition may contribute to
an increased uncertainty in the interconnection
weights. As on the detector plane, where we investi-
gated the power redistribution due to the coherent
superposition of the contribution from different SLM
pixels, on the SLM plane we have the same effect from

the coherent superposition of the contributions from
different holograms. However, as mentioned earlier,
assuming linear interaction at the SLM this coherent
superposition has no appreciable contribution to the
error.

Some deteriorating coherence effects may be re-
duced by adding a random phase mask?¢ to the SLM as
noted. If the spatial frequency of this phase mask is
higher than 1/p,, this will increase the IC requirements
of the hologram, and information will be lost unless the
hologram size is increased. If, however, the phase

mask has a constant phase over each pixel this may
spread the information more eveniy without contrib-
uting much to bandwidth requirements. A phase
modulation of this kind may also reduce the uncertain-
ties induced by coherent superposition over the vari-
ous planes, although some precautions should be exer-
cised to avoid unnecessary distortions.

VIl. Polarization Effects and SLM Performance

Most SLMs that are available today operate on the
polarization of light, and they are designed for near
normal incidence. If an SLM is to be employed with
light beams having variable angles of incidence, we are
faced with two major effects. The first effect concerns
the angular dependence of the SLM performance it-
self, and the second effect is related to the polarization
characteristics of nonplanar wavefronts.’® According
to some recent investigation, reflective magnetooptic
SLMs may be designed with reduced angular depen-
dence.” However, most SLMs available today rely on
the transmission of light through a controlled birefrin-
gent medium, such as a liquid crystal. This birefrin-
gent medium has a thickness d within which the opti-
cal path difference for the two polarization
components [(8) changes with angle. If we assume the
birefringent layer to function as a halfwave plate, we
may write the relation

{(0) = (n, —n,}d = (2N + 1))/2, 133)

where [(0) is the optical path difference for normal
incidence, N is an integer giving the order of the wave-
plate, and n,n, are the ordinary and extraordinary
indices, respectively. Ifalight beam is incident on the
face of the SLM at an angle of incidence 6, then, taking
into account Snell’s law, the optical path difference
changes to

18) = (n, (2N + 1A

- n,d
» 0
1~ sin-f 2+/1= sln:&
" n? V n*

where we ignored the splitting of the two polarization

components and took n as some average of n, and n,,.

Assuming a relatively small angle, we may write the

approximate relation

(2N + 1A (1 . gxfg) '
2 2n

this reiation means that we have introduced a phase
error of the order of

134

{(§) = 135)

o~ (2N +1)x Y00 (36)
2n?
This phase error approximately determines the value
of the field component emerging from the SLM medi-
um at the wrong polarization that will contribute a
fractional error in the power transmitted by the ana-
lyzer of the order of

sin’[(ZN+ Lr ’;:0} (37)
Polarization errors of this kind may become quite large
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for high-order waveplates, but it is rather small for
first-order plates (/V = 0) provided the angle is not
large.

Sgpecial SLM design for broader acceptance angle
may be helpful in reducing this effect. However, even
with a reduced angular sensitivity of the SLM itself,
polarizers must be employed in conjunction with them,
a» least as long as they operate on the polarization state
of light. Thus we should consider the deterioration of
the performance of polarizers with a varying angle of
incidence.”® We evaluate this degradation of perfor-
mance by first defining a polarization unit vector P
that describes the polarization orientation of light
transmitted by a polarizer for a normally incident light
beam. Denoting the propagation direction of any inci-
dent beam by a unit vector &, the transmitted beam
will l;ave a polarization orientation along the unit vec-
tor,>
P-kE-P

vi— (&P
If we place now an analyzer with its polarization vector
P, following the polarizer, the transmitted field com-
ponent e, will be the projection of & on a similar vector,
¢’ determined by £ also according to Eq. (38). With
an incident beam of unit amplitude, the transmitted
amplitude component will be

JP-RE-P) P-kk-PY
vl ~ (k- Py vl -k P
Evaluating this scalar product for crossed polarizers

(P L P) we obtain the fraction of field amplitude that
leaks through:

4 (38)

e, =2-¥ (39)

lo | = (P AVP R ) 40)

vI= (PRI - (P k)
With our definition for the maximum inclination angle
[Eq. (5)], one may show that the maximum value of the
scalar products in this equation is given by (see Fig. 2)

3inf .,

P-hk=pP . k=gina=

t41)
v2

Considering the amplitude transmission of two

crossed polarizers as given in Eq. (40), we may inter-

pret the square of this expression as the angle depen-

dent extinction ratio that attains its worst value for the
maximal angle of incidence {Eq. (5)]:

sin‘8
lel% = tan‘a = -——4—-"‘“ ' (42)

where the approximation applies for small angles that
do not always apply. This error is comparable to first-
order (N = 0) SLM power polarization error (Eq. (37)]
that for relatively small angles may be approximated
by

r2sin'd, .

nt 143)
n

If, for example, we take the large value 8,5 = 45° as for
the estimations in Sec. IV, we obtain an extinction
ratio of the order of 1/9, even with an ideal SLM
combined with ideal polarizers.
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Fig.5. Modified architecture with SLM S adjacent to the hologram
array H. P is an optional high efficiency grating that may be
employed for tilting the reference beam.

Similar polarization effects play a role also during
the recording of a hologram. While the reference
beam has a well-defined polarization the object beam
is usually not a uniform plane wave. If we adjust the
polarization of the reference beam to fit the polariza-
tion of part of the object wavefront, all beam compo-
nents incident on the hologram at different angles will
have a polarization error effecting the reconstruction
beam diffraction efficiency into that direction.

Vill. Modified Architectures

The most severe limitation in the original architec-
ture is due to diffraction crosstalk and the angular
constraints of the SLM. In a modified system, sug-
gested also in Refs. 30 and 31, the SLM is attached to
the hologram array, and it is illuminated by a uniform
reference beam (Fig. 5). Thus all the angular varia-
tions of light incident on the SLM are eliminated.
Furthermore, there is no longer a need for large lenses
in the operating svirem, aithough they may be needed
for the hologram ---:rding stage.

The system is operated here too by introducing the
input vector as in the SLM. Each element of the
hologram array is illuminated by the reference beam
through a corresponding pixel in the SLM, thus with a
reference beam-intensity proportional to a.,. The
kith hologram diffracts light toward the ijth detector
in the array with an efficiency t4,,; this detector re-
ceives from the &{th hologram light with power propor-
tional to ty,ay. The overall power detected by this
detector element is the sum of ail the contribu ions
(again ignoring coherence effects):

b, = z ta Bt (44)
&

This equation is of the same form as Eq. (1). which
contains ¢, rather than tklij and will be identicai to it
if the new | T matrix is the transpose of the old one.

One possible procedure to record the hologram array
is similar to the original architecture and uses the same
system. This reinstalls some of the problems dis-
cussed earlier but which can be dealt with more effi-
ciently since for every hologram recording, a single
source is used.
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The main initiative for this architecture was the
reduction of the angular constraints on the SLM, and
we have already seen that it also eliminates the need
for the lenses. It turns out that there are also addi-
tional advantages: The polarization effects were also
mainly related to the function of the SLM, and, there-
fore, they are absent here. Furthermore, there is no
crosstalk on the SLM plane since it is practically in
contact with the hologram. Thus in this architecture
the only crosstalk (with an ideal SLM having infinite
extinction ratio) is on the detector plane and is deter-
mined by the diffraction spot size of the hologram and
will satisfy the relation

2
ed*( M ) (45)
CdPn

\

and also by coherence effects and aberrations.

The pixel size of the SLM is virtually unlimited for
this architecture since each pixel serves only as the
source of a reconstruction beam for a single hologram.
Small SLMs available today may be used with a projec-
tion optical system to match its pixel size optically to
that of the required hologram aperture.

The most obvious penalty for the benefits of this
architecture is the reduced flexibility due to the re-
quirement that there should be a one-to-one corre-
spondence between the individual holograms and
SLM pixzels. Thus overlapping holograms are nolong-
er allowed, and also the same number of SLM pixels as
holograms must be used unless one allows the illumi-
nation of several holograms with a single SLM pixel or
vice versa. This state of affairs is useful for many
applications where the overall N* interconnections are
not required.

Coherent superposition at the detector plane still
takes place as with the original architecture, but here
the superposition is from different holograms and not
from different SLM pixels. To overcome this problem
an improved version of this architecture will be even-
tually possible with the development of large laser
diode arrays that may be able to replace the SLM.
The lasers in the array will be individually modulated
to represent the input vector.

This modification will lead to an appreciable reduc-
tionin coherent noise since each hologram is illuminat-
ed by a separate laser and each detector element re-
ceives a single contribution from each hologram. Now
the superposed beams on each detector element origi-
nate from different lasers and may be combined inco-
herently (see also Appendix A).

The diode array configuration will be superior to the
various SLM configurations in speed, dynamic range,
and SNR. The only obvious problem is that such
arrays are not available yet; however, present research
in this area should provide the needed devices in the
relatively near future.

IX. [Mumination Power Requirements

To estimate the laser power requirements we denote
the minimum detectable power by w,. If we allow n
interconnection weight levels, we would ideally like to
have a maximum power available in each channel at

the detector plane equal to n X w,. Each hologram in
the hologram array diffracts light into N? channels,
and we have N} such holograms (and, of course, also
N?% = N? detectors). Thus the maximum total dif-
fracted power we need at the detector plane will be
given by

W, = NiN’nuw,, 46)

Denoting by n an overall efficiency of the reconstruc-
tion process (including hologram diffraction efficien-
cy, useful hologram area, SLM, and detector cross-
sections as well as other losses in the system), we arrive
at a laser power of

W~ NiNnw, .

i

47
n

This power requirement may be very high although
affordable. Itturnsout, however, that we really donot
need such high power levels since this calculation as-
sumes a detection dynamic range of N2N?n, which may
become also too high for any reasonable detector.
Furthermore, if we take into account the unavoidable
noise level given by Eq. (25), we may conclude that
there is no sense in requiring a detection level which is
lower than this noise. Thus, assuming that in Eq. (25)
we always have ¢g > 1 for a realistic system, we may
require a detection limit of only ¢4 and decision levels
also not closer than this value. Basing this realistic
approach on the considerations that lead to Eq. (25) we
may derive a new value for the laser power: Weset the
minimum detectable power equal to the maximum
crosstalk noise,

w, = (leg) may = MN?Ie,, 148)

where I is the power received by the detector from a
fully weighted channel. The maximum power re-
ceived by a single detector will be when all channels are
addressed to it, that is, N2J. Therefore, we may as-
sume a worst case number of decision levels to be

Ny 1

= —. 149}
(leg)nas Mg

The number of decision levels multiplied by the detec-
tor sensitivity w, gives the maximum required power
onthe detector. For N%such detectors and taking into
account the overall efficiency, we obtain the totai laser
power

Niw,

W —. 501
i Mep 30

X. Design Considerations

Design parameters for an actual system are very
strongly application dependent, and before attempt-
ing any design procedure one should answer several
questions: What is the dimension of the vectors to be
processed? What is the minimum acceptable number
of interconnection weight levels? What is the mini-
mum number of detection levels? What is an accept-
able error? Some of the answers to these questions
may turn out to be incompatible due to the limitations
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derived in this paper, and compromises should be
made. For example, we have seen that with an accep-
tance angle of 45° the extinction ratio of an SLM
system will be worse than 1:9, and crosstalk may be at
least a few percent. This limits the number of weight
levels to ~10. A smaller more realistic angle may
provide a larger number of weight levels, but then the
number of matrix elements is greatly reduced.

As a case study we attempt to design a neural net-
work with input and output vectors of 256 X 256 ele-
ments. Several neural network algorithms use a
thresholded two-level output but with interconnection
weights requiring a dynamic range as large as possible.

Hologram arrays of this size have already been im-
plemented,'%!! and what remains for us here is to
determine their limitations. Taking in Eq. (11) [ =1
um and g, = g, we obtain p, = 256 um as was actually
implemented (with the lower limit) in the above refer-
ences. To accommodate also the off-axis carrier for
the hologram recording we need at least another factor
of 2 that leads to pr = 500 um.

If we use rectangular pixels, the various sizes will be
determined by the allowable crosstalk using calcula-
tions like those for the plots of Fig. 4. Taking an F/no.
= ] leads to fpme = 30°. Considering the architecture
of Fig. 1 with an SLM layout similar to Fig. 3 we may
attempt to choose a value d,/p, = 2 with p, matching
the central lobe of the hologram diffraction pattern.
Using the calculated results of Sec. VI, we obtain a
fractional crosstalk from a single neighboring pixel of
the order of ¢, = 0.75% and Me; = 4%. The polarization
errors from relations (42) and (43) will be of the order
of 4.5% assuming n = 1.5. The total uncertainty in the
weights is thus close to 10%, and there is not much
sense in requiring more than ten weight levels.

Returning now to the analysis of Sec. IV we may
modify relation (8) to

d_ 22 H H

£
— — ; —
= si 60° . 3-2 N (51)

For 256 pixels with nonoverlapping holograms we
need H/px = 256 leading to d,/\ = 836. With A = 0.5
um we end up with d, = 418 um. This value s larger
than available in most SLMs, and we may overcome
this difficulty by partially overlapping holograms: A
value of p, = 2d;, bring us into a practical domain.

To consider the crosstalk over the detector plane we
assume a detector layout similar to Fig. 3, keeping the
condition of Eq. (51) with dgreplacing d, and p, replac-
ing pr. In these conditions we obtain a maximum
estimated error given by Eq. (25) to be ~2562 X 4% »
2600/ with I denoting the full weighted single-channel
interconnection power. At first sight this appears to
be a formidable error, but it still constitutes just 4% of
the maximum power to be detected, and we may use
twenty-five decision levels.

If we convert to the modified architectures of Fig. 5
we may forget about the crosstalk over the SLM and its
angular dependence, although special precautions
should be taken during hologram recording. By Eq.
(51) we can replace d, by d4 and note that the detector
error remains essentially the same,
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The power requirements can be estimated from Eq.
(49). Taking the estimated ¢y = M¢, ~ 4% and assum-
ing an overall light efficiency n = 0.1, we shall need a
laser power of 1.64 X 107 w,. With high sensitivity
detectors w, = 1079 W we need a laser power of ~16
mW, which implies that laser power is not a problem,
and one may employ detectors of lower sensitivity
when used in conjunction with higher power lasers.

The required detector is also available. If we take
the obvious detector size value dy = d; = 450 um
leading to D = 450 X 256 = 11.52 cm we cannot use the
commercial CCD arrays, but we can use solar cells,
vidicons, or image dissectors for detection and readout.

To conclude this section we may safely state that
256% = 4.3 X 10 interconnections between 256° = 6.55
X 10* channels with at least 10 weight levels. and
twenty-five output levels are possible with presently
available devices. Assuming a TV rate of 30 frames/s
we may perform 30 X 2564 = 1.3 X 10!! interconnec-
tions/s. This number may be increased at least by 1
order of magnitude at the expense of the number of
weight levels (or just the decision levels in the modified
architecture). With progress in the technology of
SLMs we may expect one more order of magnitude,
and the limit is still greater once large and fast laser
diode arrays are available.

Assuming a conservative number of 3-bit weight
levels leads to a total of IC that is stored in the holo-
gram array of 3 X 2564 = 1.3 X 10!° bits.

Xl. Conclusions

We have shown in this work that it is possible to
implement with existing devices a holographic weight-
ed interconnection network with 256 X 256 channels.
The various constraints have been analyzed in detail.
and proper design parameters were evaluated. Before
implementing a working system, however, a few impor-
tant remarks should be observed:

In the estimation of constraints and errors we based
most of the calculations on worst case conditions.
Therefore, we may expect actual performance levels to
be much better than stated here because worst case
parameter values are seldom encountered. Further-
more, the appearance of all the worst case parameters
together will be extremely rare.

We have described two architectures, and at this
point it is difficult to say which is preferred since
preference appears to be application dependent.
While in the modified architecture one may definitely
use a larger number of weight levels, in the first archi-
tecture more channels may be incorporated due to the
possibility of overlapping holograms.

In many applications one does not need all the possi-
ble interconnections as in the human brain where only
avery small fraction of the total number of neurons are
actually interconnected. For cases like this one may
arrange the channels in the array so that most of the
interconnections are made among nearby channels
from the constraints point of view. Such a sectioning
of the array will allow a significant increase in the
overall array size since our constraints must be kept
only within a single section.




Finally, we should point out that in this application
the holographic reconstruction produces the complex
conjugate of the writing wavefront. Therefore, while
propagating through the optical system more phase
distortions are compensated if they are the same as
during hologram recording. This means that the opti-
cal components do not have to be of the highest quali-
ty, although they must perform adequately well for the
hologram recording.

Appendix A: Paraxial System Analysis

The purpose of this Appendix is evaluation of the
performance of an ideal system to realize the limita-
tions introduced by fundamental physical processes.
We calculate the system transfer characteristics using
paraxial approximation and the operator notation
which is summarized in Appendix B. We also assume
ideal SLM performance and hologram reconstruction.
To simplify the expressions we ignore constant phase
and amplitude factors that will affect the signal and
noise in the same way; i.e., they are not important for
this discussion. In any case, if these factors are need-
ed, they can be reinstalled by using simple physical
considerations.

We start these Appendices from the hologram re-
cording stage, which is the same for the original archi-
tecture as well as for the modified architectures and
then discuss separately the three configurations.

A. Hologram Recording

For a discussion of the hologram recording stage we
return to Fig. 1 and the notations used in the main text.
We introduce a light source with complex amplitude
u(x,y) at the location of the ijth detector. Without
losing generality we may simplify the notation by as-
suming f; = f, = f. The complex amplitude U; inci-
dent on the SLM can be expressed in operator form by
the relation

U, = Q-1 AR(fS(id 2 + jdFlulx,y), (Al)

where we introduced the shift operator & [Eq. (B5)] to
represent the position of the source and denoted by 2
and § the unit vectors along x and y, respectively. The
input complex amplitude is operated on by R[f], the
free space propagation operator (FPO) [Eqs. (B7)~
(B9)] through a distance f and is finally multiplied by
the quadratic phase factor @Q(—1/f] [Eq. (B1)], which is
the transfer operator of an ideal thin lens [Eq. (B6)].
This distribution is multiplied by the SLM transfer
function specified for the ijth recording,

hy(ry) = z h,uélkd,2 + 1d,9] rectiz/p,y/p,),  (A2)
Al

where we again employed the shift operator to place a
rectangular window function at the proper position of
each pixel. This SLM transfer function is again trans-
formed by the second lens propagated a distance f and
finally recorded on the hologram at position ij as

U, = RIAQ(~1/Ah,(z ) U, (A3)

Returning to Eq. (A1) we substitute Eq. (B18) for
the FPO and use Eq. (B8) to obtain

U, = (1/AF Q[1/A18(d3)ulz.y), (Ad)

)

where we defined
d3 = idgt + jd 5. 1A3)

Using Eq. (B13) to commute the shift operator with
the quadratic phase we obtain

U7, = W1I/A1FS1d3]s(dd/fQ(1/flulx.y). 1A6)

The operation of the Fourier transform (FT) operator
is evaluated by using Eqgs. (B15) and (B16) to yield

U3, = v[1/M18(-AdE) S (d2/MIF Q[1/flutz.y). (AT)
Operating with the scaling operator we obtain
U3, = §[=d%/f1S1d3 ) [1AAFQ(1/Aulx.y). FAS)

If the source is an ideal point source, i.e., u(x,y) =
8(x,y), the quadratic phase factor is eliminated by the
sifting theorem, and, recalling that the FT of a delta
function is unity, we obtain a displaced plane wave
traveling at an angle defined by the position of the
point source:

U3, = 9(-d¢/Asld?). (A9)

Naturally, the displacement of a plane wave has no
meaning. Thus we are left with a linear phase factor as
it should be. The finite extent of the source intro-
duces an apodizing factor to the illumination of the
SLM plane. Thus the illumination of the SLM will
not be uniform, and this nonuniformity will be shifted
according to source location. Usually the source will
be approximately a Gaussian source, and the complex
amplitude distribution over the SLM plane can be
predetermined and partially compensated for. Keep-
ing this in mind we proceed with the assumption of an
ideal point source.
Substitution into Eq. (A3) together with Eq. (B18)
leads to
U, = QUAYI/MFh, (x.)8(~d%/1). Al

Performing the FT operation we obtain

U, = QUANIAAS[~dS/MH, = QIUAS[-d2 WL AIH. .
(ALL)

where H;, is the FT of h;,. If we need to reinstall the
source distribution we should substitute here and in
the following:

WI/MH,, ~ GUAH,) « [9]=d/fv]-1]Q[1/Autz.y)], AL

where we used some operator algebra and the = denot.
convolution. The complex amplitude of Eq. (Al1) is
recorded as the ijth hologram throus in aperture or
more generally through some window function w(x.y)
that apart from a limiting aperture may also include
some apodization function. In most cases, however.
this window function will be of the form

w(z,y) = rect(i : -’—)- (AL
Pr  Pn
It should be noted here that a reinstallation of the
finite source size would contribute a convolution over
the hologram plane tending to spread the flux and
reduce the information content of the system.
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B. Reconstruction and Operation—Original Architecture

The hologram array is reconstructed with the conju-
gate of the reference beam. Thus, for each hologram,
we reconstruct the complex conjugate of an expression
like Eq. (Al11) multiplied by the window function
w(x,y). The reconstructed beam is propagated
through a distance f, multiplied by the lens transfer
function and then by a new function g(x,y), written on
the SLM. This new function is the input vector to the
processing system.

glx,y) = zgmé’[md,i + nd.y] rect(x/p,y/p). (Al4)

After multiplication by g(x,y) the complex ampli-
tude is transformed by the second lens and propagated
a distance f to the detector plane that will receive the
complex amplitude from hologram ij,

L"x’] = R{flQ(-1/flg(x,y)Q[-1/f] R{f]
XS (A wlx NS {=d? | [1I/MIH,,

Iy

(AL5)

where the complex conjugate of Eq. (A11) has been
substituted and modulated by the properly positioned
window function. The overall field distribution on the
detector plane will be the coherent summation from all
the holograms,
U, = z L.
]

Using Eq. (B18) and then Eq. (B8) in Eq. (A15) leads to

U? = QUM I/MIFg(x (1M TS [-de |w(x.y)v{L/MH,,
AL

(A16)

where we took into account that the hologram plane is
the inverted image of the detector plane with unit
magnification, that is,

$(di] = ${—d? (A18)

and employed the definition of the shift operator [Eq.
(B6)]. Commuting the shift operator with the FT
operator using Eqs. (B14) and (B16), we obtain

LY = Q(UAW[L/MF gz y)e[L/MS (NS Fw(x.y)v [ UMH,,.
(A19)

Moving now the linear phase factor more to the left
we may write

U3 = QUAS(Av[1AFg(x.3)v( LM Furiz.y W LM H.
(A20)

Now we may translate the right-hand side scaling op-
erator to the left and combine it with the middle one to
obtain

U? = QU/AS[d3)r[1/MFe(x. ) FwMz MYIH,,.  (A21)

The overall process generated an extra quadratic
phase factor that is not important for the detection
while the shift operator places the center of the distri-
bution at the proper pixel on the detector. The signal
to be detected and the amount of crosstalk to be ex-
pected are determined by the rest of the expression.
To analyze the various contributions of the functions
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involved let us start with an unlimiteu hologram re-
cording, that is, w(x,y) = 1. To shorten the equations
we define a new amplitude U’ by the relation

L = Q[1/f)$(d2JL".

Putting w(x,y) = 1 and performing the right-hand side
FT operation in Eq. (A21) we obtain

U = u{l/M]Fglx.y)h*(—x. =),

1A22)

1A23)

which essentially is the cross-correlation of the FT of
g(x,y) and h(x,y). With our special functions [Egs.
(A2) and (A14)], however, it is easier to substitute
them right away and observe that they are real and the
rect function is symmetric. Both functions are com-
posed of the same rect function with terms shifted to
various positions. Since the centers are spaced at
distances that are multiples of d, that are never smaller
than the extent of the function itself p,, the only non-
zero terms in the product of the two sums are those
having kl = mn. Furthermore, the square of the rect
function is also the function itself; thus we may write
L” = y[I/MF Zg,,h,,,,é‘[d:,] rect(x/p,.y/p.). 1A24)
L1
where we introduced a position vector similar to Eq.
(A5). Performing the Fourier transformations and
the scaling operations lead to the final expression
U= z Buih w8144/ f) sincixp  M.yP /AN, 1A29)
il
In a real situation we should reinstall the source distri-
bution u(x,y), which should be convolved with the sinc
function to obtain the final distribution.

Some of the consequences of relation (A25) are dis-
cussed further in the main text while here we continue
by returning to the complete expression that contains
the window function but assuming a source distribu-

tion much smaller than the sinc distribution. If we do
this, instead of Eq. (A23) we have
U = o[ UM Fgtxy) FwiAx My H,. tA26)

If we consider only the right-hand side FT we are
essentially on the SLM plane, and we see that there the
distribution is given by a convolution of the FT of the
window function with the interconnection function A.
Thus this distribution is widened contributing to the
crosstalk over the SLM plane. However, in the final
distribution, that may be written in the form

U = o[ U/AUFg(x ) o lwix,y {1/ AAH L (A27)

where « denotes convolution. The window function
actually reduces the crosstalk over the detector plane
since the width of H,, is cut by the window function
before performing the convolution operation with the
FT of the input vector g.

C. Reconstruction and Operation-Modified Architectures

In the modified architectures (Fig. 3) the hologram
recording process is similar to that of the original con-
figuration. Thus we may start here also from the
reconstruction where now each hologram is multiplied




directly by its input vector element. The complex
amplitude is now propagated a distance f, multiplied
by the lens transfer function, and detected on the
detector plane. The lens has no effect on our results
here, but it is useful in correcting for a quadratic phase
factor to reduce the variation in the angle of incidence
over the detector plane. Denoting the complex ampli-
tude of the light transmitted by the ijth element of the
input vector by g,;, it reconstructs the ijth hologram to
generate the distribution over the detector plane given
by

U? = @[-UAR(fs,
X 8[=dd|w(z @[~ UAS(-d2IW(I/MH,,  (A28)

where we introduced again the shifted window func-
tion that delineates the hologram (and now also the
SLM pixel) size. Substituting Eq. (B18) for the FPO,
using Eq. (B8), and taking into account that g;; is just a
cgnstant and {§{-d%}w(x,y)} is a scalar function, we
obtain

UY = g, o[~ 1/MIFS[-d3w(x.yo[1/MH,, (A29)
Performing the scaling and FT operations leads to
Ut = g,8(=d2/MB[1/MFw(xy)] = -2~y (A30)

Taking into account that h is a real function, composed
of symmetric terms (the rect functions), we recon-
structed the original h function multiplied by the vec-
tor element g;;, but each pixel distribution is now wid-
ened due to the convolution with the FT of the window
function. This convolution will cause a crosstalk by
extending the distribution from each detector pixel
into adjacent pixels. To obtain the complete distribu-
tion over the detector plane one must sum all the
contributions coherently,

e (A31)
Lot
iy

If we substitute Eq. (A2) we obtain a relation similar
to Eq. (A25), but this time the linear phase factors
originate from the hologram position. The advantage
of the laser diode array architecture is that these phase
factors are canceled due to the incoherent superposi-
tion,

U = 3" Ul (A32)

]

Appendix B: Summary of Operator Algebra

In this Appendix we summarize the definitions and
relevant relations of the operator algebra. For sim-
plicity we shall ignore all constant factors (phase and
amplitude) that are irrelevant for the discussions in
this paper since we are interested in the complex am-
plitude distributions and not their absolute magni-
tudes that can be estimated from simple consider-
ations.

Assuming for all operations a general complex func-
tion f(x,y), we define the basic operators as follows.
Quadratic phase factor:

Qla] = exp(%z ap") ' ‘Bl
with k = 27/, and p denoting the transversal coordi-
nate

p=xk+ vy, o= pl. 1B2)
Linear phase factor:
$[s] = expljks - p). tB3)
A scaling operator v[a] is defined by the relationship
v[alf(x.y) = flax.aviv(a], (B4)

and the Fourier transform operator is defined by the
integral

FAxy) = § f(x'y) expl2rj(xx’ + vy)dx'dy’]. B35
The shift operator is defined by the equation
$lmlf(x.y) = flx = m_y — m)&(m]. (B8)

The transfer operator of an ideal thin lens of focal
length f is

L1{f] = @{-1/fl. BT

Some basic relations are evident from the defini-
tions of the basic operators:

@laj@(b] = @[a + 5], (B8)
vialy[b] = v(ab], 1B9)
v[a]@Q[b] = @fa’b]v{a], 1B10)
v[b]#[m] = £[m/b]s{b], tB11)
v(b]¢{m] = ¢[mb]v{b], 1B12)
Q(a)${m] = £[m]g(am]Q|a]. (B13)

As stated above, constant factors have been ignored in
some of these equations and also in the following.
Using Fourier analysis we can show that

v[b]F = Fu(1/b], {Bl4)
FG(s] = $[s/7A]F. (B13)
F&(m] = ¢{-Am}ZF. (B16)

Free space propagation, i.e., the Fresnel-Kirchhoff
integral, is described by the FPO, which can be ex-
pressed in various ways by the basic operators:

Rld] = F7'Q[~Ad|F = FQ[-A1d]F . (B17)

where d is the propagation distance. Another useful
expression is

R{d) = @{1/d}v{1/Nd]|FQ{1/d], (B18)

and for large distances an asymptotic expression may
be also employed:

lim R(d) = lims{1/Ad) 7. (B19)
—a it

The FPO satisfies the cascading property
n{a]R(b] = R(a + b]. (B20)
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A simple optical system containing a single lens may
satisfy the Fourier transforming condition:

RAQ(-1/fR(d] = o[% (1 -%)]v[%f]ﬂ' (B21)

that becomes exact ford = f. Alternatively, the imag-
ing condition, .

l/a + /b= 1/f, (B22)
yields
RlalQ[-VAR(B] = @ [% (1 + %)] J—a/bl.  (B23)
With the basic relations we can also show that
Rld|@{1/q) = @[1/(d + »[1/(1 + d/QJR[(1/d + 1/g)"Y],  (B24)
Wbl R[d] = Rd/b¥[b]. (B25)
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APPENDIX C
APPLICATIONS PAPERS

One of the early suggested applications of massive
parallelism was to cellular array processing (Opt. Eng. 25, 825).
This applies as well to symbolic substitution as practiced by Bell
Laboratories (Alan Huang) and to simple associative predictors
(Opt. Eng. 25, 1179).

Perhaps the most important SDI application is to massive
parallel optical data base management (SPIE 938, 52 and Appl.
Opt. 29, Vol. 2, 195). This is the fastest way to search gigabit
files.

Of course, these holographic memories can store templates
for pattern recognition (SPIE 754, 74) or switching patterns for
binary optical devices (SPIE 769, 101) or generalized mapping
operations (SPIE 881, 56). The concept of stacked holograms
for this purpose also has some promise (SPIE 883, 203).




b}

Systolic optical cellular array processors

H. John Caulfield, FELLOW SPIE

The Center for Applied Optics

The University of Alabama in Huntsville
Huntsville, Alabama 35899

Abstract. Using space-variant pattern recognition of up to 256 3 x 3 pat-
terns of 1's and 0's In parallel and Inserting image information
sequentially in a well-defined pattern, we can construct an optical
systolic cellular array processor for 3 x 3 neighborhoods that produces

output points at one-third the rate at which points are input. This atlows
reprogrammable preprocessing of data input.
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1. INTRODUCTION

One of the announced goals of the Space Station program is
to include robots for operation and repair in the space en-
vironment. While not yet R2D2 clones, these robots must
perform tasks well beyond the current state of the art.
Typical of such tasks is the tracking (six kinematic
parameters per object) of muitiple (say, 0 to M) objects
from a known set of N 2 M possible objects. The
background clutter is unpredictable. Occultations are prob-
able. Lighting will be nonuniform. Response times must be
very fast, say, TV frame tirae.

Many *‘tricks’’ must be applied to make this happen. The
Ames Research Center is working on intelligent optical pat-
tern recognition and optical control processing.* The Jet
Propulsion Laboratory is developing rapid coherent optical
data base search methods.t The Johnson Space Center is
developing coherent optical pattern recognizers with in-
variances to various of the six kinematic parameters.t
Besides these internal NASA programs (this list is almost
certainly incomplete), programs must be developed outside
NASA as well if optics is to play a powerful role in these
robots. A marriage of work in optical processing both inside
and outside NASA will be required for these robots.

*D. Cliffone, private communication (1985).

tH. K. Liu, private communication (1985).

$R. Juday and Michael Duff, private communications (1985).

Invited Paper SS-108 received Jan. 9, 1986; accepted for publication March
28, 1986; received by Managing Editor March 31, 1986.
©1986 Society of Photo-Optical Instrumentation Engineers.

Optical Engineering 25(7), 825-827 (July 1986).

One task not being attacked is very rapid (relative to the
frame time) nonlinear image preprocessing. We have in
mind tasks such as skeletonization, median filtering, feature
location, and noise removal. Such tasks are well suited to
modern cellular array processors, and the speeds of some of
these are essentially fine for the task. On the other hand, if
we wish to do many such operations in a frame time (a
strong likelihood in view of the iterative nature of many of
the algorithms), new technologies may be needed. Also, we
would like flexibility to program the cellular array processor
to perform noniterative sequences of operations. These
tasks may be facilitated by an optical cellular array pro-
cessor.

2. CELLULAR ARRAY PROCESSORS

Cellular array processors are simply regular arrays of locally
interconnected synchronous processors, or cells. There is a
well-defined cycle time in which each cell receives informa-
tion from all its neighbors, performs its characteristic
calculation, and has its value replaced by a new value. No¢-
mally, there is a one-to-one mapping of cells onto pixels.'

We consider here only finite impulse response (FIR)
operations, or neighborhood operations.? For this
preliminary study we specialize to a very small but ser-
viceable 3 x 3 neighborhood in a square array. Furthermore,
we specialize to a binary image. Removing both specializa-
tions is possible but difficult enough to be a distraction in
this initial study. More general and complex optical cellular
array processors have been proposed by Tanida and
Ichioka.?# By specializing, we can simplify the design con-
siderably.

The approach we use is cell replacement. Rather than ex-
plain this method abstractly, we offer some trivial examples
that should make the generalization obvious.

Suppose we want to recognize the corners of all objects in
the scene. We can do this by replacing the central pixel in a
3 x 3 neighborhood by a 1 if the cell has any of the four pat-
terns shown in Fig. 1. All other patterns will produce a 0 in
the center pixel.

7
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Fig. 1. 3x 3 neighborhoods that lead to a 1 in the output for corner
recognition.

Now suppose we wish to use a median filter to smooth out
noise without blurring ‘‘real edges.’”” Then every 3 x3 pat-
tern with five or more 1's will lead to the center cell being
replaced by a 1. All other patterns lead to a 0.

Readers unfamiliar with these concepts might wish to *‘in-
vent’’ some ‘‘algorithms.’’ For instance, a shift-right-one-
cell substitution is easy to discover.

3. GENERAL APPROACH

There are *‘only” 2% = 512 possible patterns. All we need to
do is recognize at most 28 = 256 patterns—the worst case
being when 1- and 0-yielding patterns are equal in number.

If we use space-variant pattern recognition, i.e., if we
control where the pattern appears, the pattern recognition
becomes trivial.

On the other hand, only one pattern at a time can be in
any particular location. This suggests that only one output
pixel at a time can be generated. As we move the
neighborhood from one pixel to the next in raster format,
six of the nine pixels stay in the neighborhood, three drop
out, and three are added. This suggests a pulsating flow pat-
tern, in fact, a systolic array processor.

Accordingly, we have designed an optical systolic array
processor for cellular array processing. Because the pro-
cessor is pipelined, it generates outputs at a rate propor-
tional to the input rate. A simple systolic cellular array pro-
cessor of the type to be described can move data out at one-
third of the data input rate. If the recognition occurs in
parallel (not unreasonable for 256 ‘‘channels’’), the input is
the effective rate limiter.

The rest of this paper shows one way of doing this. Many
other ways (some without pulsing, some doing multiple lines
at once, etc.) will occur to optics-oriented readers. The
method we show was chosen for didactic and constructive

simplicity.
Let us label the cells as follows:
(L1 (1,2 ... (AN
2,1 22 ... @N

M,1) M.2) M\N) .

Any size or shape of neighborhood can be defined.
Somehow padding (pixels around the edges of images) must
be defined to allow edge cells to be calculated. A sample
neighborhood is the 3 x 3 cell. For instance, the **image’’ of
cetl (2,2) [call it (2,2)’]) depends on the pattern of 1°s and 0's
in the subarray:

826 / OPTICAL ENGINEERING / July 1986 / Vo!. 28 No. 7

neighborhood operations optically. We first map the 2-D
neighborhood into a 1-D neighborhood in an appropriate
way. For (2,2)’, the neighborhood is

(1,3
2.3
3.9
(1,2)
2.2)
3.2)
n
@1
a,1).
For (2,3)’, the neighborhood is

(1.4
2,4)
3.4
(1,3)
2.3
3.9
1,2
@.2)
3.2).

Note that moving from (2,2)’ to (2,3)’ involves moving the
existing pixels down three positions and adding three new
ones at the top. If a shift occurs in At, the pattern is
LLLLLLLLRLLRLLRLLRLLR..., where L is the load
operation and R is the read operation. Flowing pulsating
calculations in essentially identical local processing units
have come to be called ‘‘systolic."’

In the simplest case the data will be flowed in using an
acousto-optic cell. For this purpose, we can envision an
acousto-optic cell as a shift register of optical transmissions.
That is, a set of optical transmission values of 1's and 0's
can be inserted into the top of such a cell. They thereafter
flow through the cell at a uniform speed.

After the initial pipeline loading, an appropriate nine pix-
els are present to calculate a new image cell.

Let us use two side-by-side acousto-optic cells (in the same
material for convenience) to represent a neighborhood.
Thus, the 2-D and 1-D mapping converts

O e -
O == -
(=20 = =]

to




4
A )

e O == OO O

(=]

Our new mapping converts this to
0

- O e O O
—_—0 O = OO = = -

0

An optical signal with light of a strength 0 or 1 in this pat-
tern is easy to produce with a two-cell acousto-optic device.
Both 1's and 0’s in the original cell are now represented as
light-on positions.

_ A recognition spatial mask with transmissions 1 and 0 can
be inserted into the optical pattern. Indeed, up to 256 binary
matched filters can be addressed in parallel using a typicai
spatial light modulator (SLM) as a mask.

When an exact match between the input signal and the
mask occurs, the optical signal integrated over all nine (18)
cells is 9. No other mask can give a signal higher than 8.
Thus, even analog optics can yield an extremely low
misidentification rate.

Any signal (using multiple masks) greater than, say, 8.5
will give an output 1. All other signals give a 0. Figure 2
shows the sequence of operations just discussed.

Having given an overview, we now backtrack and cover
some mechanisms briefly.

Acousto-optic cells are crystals with attached transducers
for launching bulk rf acoustic waves into them. The com-
paction and rarification of the crystal by the sound waves
produces an instantaneous diffraction grating that prop-
agates through the crystal at the speed of sound. Any
modulation of that rf carrier modulates the diffracted light.
Schlieren with optics is used to image only the diffracted
portion of the incident light. The effect produced is that of a
moving amplitude pattern—exactly what is needed accord-
ing to the analysis just presented.

Fixed recognition masks can be made photographically,
but SLMs allow us to build a real-time reprogrammable op-
tical cellular array processor.

4. ASSESSMENT

This simplest optical cellular array processor inputs data to
the acousto-optic bandwidth B and outputs data at a rate

SYSTOLIC OPTICAL CELLULAR ARRAY PROCESSORS

KECCA:ITICN
0 01
110 1 10
101 _— > 0 01
000 1 =——>>10
0 01
0 01
1 10
1 10
0 01

MAX SIGNAL = ¢
T = 85?7

Fig. 2. Sequence of transformation from a 3 x 3 binary array 10 a
unique 2x 9 array of 9 “on" and 9 “off" cells that, when passed
through a matching mask, summed, and thresholded, uniquely
identily the particular cell contiguration,

B/3. For a frame of 500 x 500 pixels and a rational band-
width of 90 MHz this leads to 120 frames per second. More
complex processors will go even faster.
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1. INTRODUCTION

While most attempts at optical computing have aimed at
numerical processing '-35 or numerically assisted reasoning.$-8
little effort seems to have been devoted to symbolic proccss-
ing. In particular, prior work on optical symbolic processors
has aimed at drawing inferences from input data, stored data,

and rules. This paper is intended to show that optical comput-
erscando far more than that. In principle, they can be taught
to speak English, tell stories, play simple games, etc. The
particular approach shown here is chosen because, of all the
non-inference-drawing schemes 1 have discovered, it appears
to be the simplest to implement optically. No claim to opti-
malny in any sense is made; rather, | hope to draw some
attention to this heretofore largely neglected task for optical
processors.

By symbols we mean what is meant in normal conversa-
tion: letters, words, numbers, events, concepts, etc. We
assume that these symbols can be listed, i.c., that they are
countable. This means that we could make a list of them and
assign a number to each. Our object will be to produce mean-
ingful and useful strings of symbols: sentences, equations,
reactions, etc. One of the good features sought is innovation.
although we may wish to control its rate of production.

2. JOINT CONTEXT NETWORK (JCN)

The essence of the JON is to remember, predict. or postulate
the next symbol. given the previous N (as well as prior teach-
ing) as the context. We will call N the context depth.

An exampie may prove helpful. | have just read an article
on speech recognition. A typical sentence begins: “The differ-

Paper SC-6112 received March 4. 1986; accepted for publication July 1.
1986. recesved by Managing Editor July 21, 19%6.
€ 1986 Society of Photo-Opuical Instrumentation Engineers

ences between normal and ... .” With (1) your knowledge of
the structure of the English language and (2) the context of
that beginning. you have little difficuity in “predicting™ that
the next word will be “abnormal.” Can we make an optical
symbolic computer that can do the same? Confronted with a
new situation, can we generate an appropriate response based
on past learning plus trained “insight™

A wonderfully readable book by J. H. Andrae, titled
Thinking with the Teachable Machine,’ gives the details of
the context-driven approach we call JCN. 1 show here a
simple example. Say my task is weather forecasting. I want
to know if today will be clear (C). rainy (R), or partly cloudy
(P). The past few weeks have been CCCPPRRPCC
CCCCRPCCPCCCCCCP. What shouid | predict next? For
N =2 JCN, we learn

CC = C (the first two symbols implied the third) .
CC>P,
CP>P,
PP >R,
PR >R,
RR=>P,
RP>C .,

"PC>C .

cCC>C
cCC>C
CC>C.,
cC>C,
CC->R .
CR->P,
RP>C,
PC>C.,
CC>P.
CP>C .
PC>C.

(earlier we had CC = P) .
(a popular implication) .

Our N =2contextis CP. Bas+1 »n prior observations. the two

OPTICAL ENGINEERING . G::c e 1986 / Vol 25 No. 10 - 1179
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Fig. 1 For contextN = 2, we need two bistability arrays (A and B). In
(8). we see concept 112 being sntered as s column of light for one
panel (A). In (b}, conceptCgag is entered on both. Because theCyy2 is
still on, the threshold is excesded st the intersection. This occurs only
whaen C,  is followed by Coag- In (c), we have added concept Cgo.
Because the Cgy; light is still on, the interaction in B exceeds thresh-
old and indicates that concept Coyg followed by Ceoo has just
occurred. Holograms illuminasted by light passing through thoss
intersection points spread light across detectors or other bistable
panels if greater than depth 2 is required.

possible predictions for the next observationare Pand C. We
can choose one at random or seek further context. The N=3
JCN also would predict P and C, so thatis no help. An N =4
JCN would predict P; that may be our best bet.

3. ENCODING

Since, by hypothesis, the symbols are countable, we can put
them in one-to-one correspondence (order unimportant) with
the counting numbers 1, 2, 3,... . Suppose, for the moment,
that the number of symbols is small, say 512, and the JCN has
a context of only N = 2. We use two 512 X 512 arrays of
optical bistable devices. Call them A and B.

Figure | shows how A and B are addressed if the symbol
string is C; |, Coy5 Cogo- After thecontext C,, G, is established,
a unique intersection occurs in A. The context oy Cyy is a
unique intersection in B. The next intersection occurs in A, etc.

Thus odd-numbered (lst, 3rd....) concepts must be hori-
zontal in A and vertical in B, while the reverse is true of
even-numbered concepts.

To address a concept, we must know whether it is odd or
even. We then cither turn on a light beam or deflect a light
beam to the proper position. The beam then strikes a holo-
gram, which spreads it as required. Each beam is on for the
length of the context (two “read times " in this example). Each
beam has strength |, and a threshold of around 1.5 detects

1180/ OPTICAL ENGINEERING / October 1988 / Vol. 25 No. 10

coincidences. The transmitted light or (better) newly gener-
ated light from a bistable laser strikes another hologram,
which (a) gives the prediction or memory or (b) gives the set or
weighted set of predictions or (c) sends data on to other
processor arrays.

Cascadinga number of these systems to use a depth greater
than 2 is straightforward.

4. EXAMPLE CASE

Suppose we wanta 512 symbol N =2 JCN. We postulate two
512X 512 arrays of bistable lasers that emit only if struck with
light of power at least 1y. Each symbol can be represented by
one of 512 A sources or one of 512 B sources. Each of these
1024 sources is followed by its own hologram. which directs
uniform vertical and horizontal light beams toward the A
and B bistable laser arrays. The power on cach illuminated
laser is less than I{/2. Thus, only at the intersection does a
laser beam arise. That laser beam, in turn, strikes its own
hologram, which causes the light to predict or remember
something from the joint conjunction by illuminating oae or
more of 512 detectors.

Programming or teaching is embodied in the two 512X 512
arrays of memory holograms. If the output (22 X 23 = 506 pius
an extra row of 6) is the joint Fourier transform of both 2-D
laser-hologram arrays, the programming holograms are simply
properly aligned and spaced gratings.

5. ANALYSIS

This paper is intended to illustrate a new direction for optical
computing: symbolic processing. Optical parallelism makes
speed independent of the number of symbols processed,
although hardware complexity does increase. The JCN speed
can be made independent of N (the context depth) by prepar-
ing some contexts while reading others. Again. the price is
complexity.
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ABSTRACT

Using Page Oriented Holographic Memories (POHMs) optically addressed Spatial Light Modulators (SLMs),
joint transforam correlators, 2D or 1D acousto-optic cells, and optically addressable RAM: we can produce a
massively parallel optical data base management systea.

1. _INTRODUCTION

Optical Data Base Management Systems (DBMS) operating with massive paralle]l read in from memory. query,
and read-out to electronics would offer huge advantages over the current bit-oriented ur hoped-for byte-
oriented systems if

+« the dats base is too massive for conventional DBMS systems,

+« the access time required is too short for conventional DBMs syutems, or

¢+ (preferably for optics) both.
When there is need to search huge data bases very fast, we are sutomatically in the big systea domain which
will not exclude fairly complex optical systems. Therefore, the objective of this work is to explore mas-
sively parallel optical DBMS.

The key ingredients are optical systems for
+ wsassive paralle]l read into an optical system from a large data store,
+ parallel query on the whole "page” in the optical system,
* parallel read out from the optical system to output electronics, and
+ paralle]l "intelligent” control of the operation. All of tbese tasks can and probably should be per-
formed optically.
For brevity, we deal here only with the first two tasks. A separate paper will discuss the latter two.

111. PARALLEL READ IN

Obtaining whole pages of data in parallel i{s the domain of page oriented holographic memories or POHN
(1). Esch page is represented by its own spatially discrete hologram on a large substrate. Storing a 256 x
256 page requires a roughly one millimeter hologras. We can store 10* of these on a 1a x 1m substrate. The
holograss are accessed individually by deflecting a laser beam to the selected hnlogram. Whichever hologras
is selected produces its page at the same physical location. There it strikes an optically addressed
Spatial Light Modulator (SLM) which reads the full page into the optical syates. This is shown in Figure 1.
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IV. _PARALLEL_QUERY

The first step in parallel query is to restrict the field of regard to items of interest. We may have
the data base arranged in columns such as
Ordinal Pamily First Second SSN
Number Name Name Name

Our task is to find all people with the second name “John" with 5S4 as the fourth and fifth
their SSN (Social Security Number). Using an electronically addressed SLM we illuminate et

for second names and fourth and fifth numbers as shown in Pigure 2. only the columns
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The next step is to search for matches with

We do this by tesmplate matching in parallel using a joint transform correlator as shown in Figure 3.
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V. _READOUT AND CONTROL

We will only hint at these items here. The selected rows output must be accumulated continuously on
parallel read in RAN for subsequent use. Figure 4 shows the basic concept.

Control is the sost difficult part {f we wish to replace exhaustive search with heuristic search. In
later paper we will show an adaptive optical neural network suitable for this purpose.
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Optical database/knowledgebase machines

P. Bruce Berra, Karl-Heinz Brenner, W. Thomas Cathey, H. John Caulfield, Sing H. Lee, and Harold Szu

In this paper we discuss various aspects of databases and knowledgebases and indicate how optics can play an
important role in the solution of many of the previously unsolved probiems in this field.

}. Introduction

A database is a collection of interrelated data and
during the past 10 years the word database has become
somewhat of a household word. This has occurred
because of the ever increasing use of databases and the
realization of their considerable influence on our daily
lives. They are indispensable to airlines, automobile
companies, grocery chains, department stores, hospi-
tals, colleges and universities, local and state govern-
ments, and the federal government. Their existence is
so important that in many organizations the database
is :;;nsidered aresource as are personnel and raw mate-
rials.

Since software database management systems
(DBMS) often exhibit poor performance, considerable
research has been devoted to specialized hardware de-
vices, called database machines, to seek performance
improvement. These devices take advantage of the
significant advances in electronic hardware technology
by moving software functions into hardware and pos-
sess considerable parallelism.

_ One of the most rapidly growing fields of artificial
intelligence (AI) is knowledgebase systems. A know-
ledgebase consists of rules and facts about particular

Omains of interest, and knowledgebase management

\
& P.B. Berra is with Syracuse University, Department of Electrical
c°mP‘ft¢l‘ Engineering, Syracuse, New York 13244-1240; K.-H.
tul'enrner 18 with University of Erlangen-Nuremberg, Physics Insti-
tute, D-8520 Erlangen, Federal Republic of Germany; W. T. Cathey
18 with University of Colorado, Center for Optoelectronic Comput-
m‘_sy"fm. Boulder, Colorado 80309-0425; H. J. Caulfield is with
b::;"'lty of Alabama, Center for Applied Optics, Huntsville, Ala-
£ 35899, S. H. Lee is with University of California, San Diego,
ni:ﬂncal & Computer Engineering Department, La Jolla, Califor-
W 92093; and H. Szu is with U.S. Naval Research Laboratory,
Shington, DC 20375-5000.
ived 13 January 1989.
0003-6935/90/020195. 11802.00/0.
€ 1990 Optical Society of America.

systems are concerned with inferencing on the know-
ledgebase, as well as other functions. The most well-
known system of this variety is the expert system.
Current expert systems exist or are being constructed
in business, medicine, national defense, and engineer-
ing.! There has been relatively little research directed
to the development of knowledgebase machines.’

There is a great deal of commonality between data-
base systems and knowledgebase systems. In fact,
there is considerable research and development cur-
rently going on which is aimed at the integration of the
two types of system. One of the resuits of this integra-
tion is the requirement for increased performance of
the integrated system over either of the individual
systems. Database machines have had as their objec-
tive an increase in the performance of the database
system primarily in addressing problems that have a
very large database and/or a real time requirement.
While the performance of these systems has been im-
proved somewhat, they have not yielded the results
that were desired.

In dealing with the types of very large and/or real
time problem that we are interested in, it is natural to
look to optics for possible solutions. This is due to the
large storage capacities available through the use of
optical media and the inherent speed and parallelism
of light. Thus we examine here the potential perform-
ance improvements obtainable from optical database/
knowledgebase machines.

We begin by considering database management. da-
tabase machines, and knowledgebase management.
We then present a paradigm for analyzing the poten-
tial advantages of optics. This is followed by sections
on storage strategies, access strategies, and processing
of data prior to conversion to electronic form. Finally,
we summarize our analyses and cite some future direc-
tions that hold considerable promise.

§l. Background
A. Database Management

A database management system is a software pro-
gram that is concerned with the task of controlling and
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managing the database as a resource independent of
the computer hardware that hosts it and application
programs that interface with it. The DBMS must
have the facility to establish the database within the
system in response to the database designers. The
DBMS must make the data available to a wide variety
of users ranging from external application programs to
a casual user posing a particular query. Inevitably,
the database must be updated. Thatis, new data must
be added, old data must be deleted, and existing data
must be changed. Thus, the DBMS must also have
the capability for performing these updates. In fact,
many databases (e.g., airline databases) have almost as
much update activity as query activity. Of course
there are many types of database that have limited or
controlled update activity (e.g., various forms of text
databases).

The DBMS must provide the facility for insuring the
integrity of the database. This is obtained through
various consistency checks and backup and recovery
systems. Finally, the DBMS must regulate access to
the database to protect it, the system itself, and the
privacy of users.

It is not surprising that DBMSs which furnish all of
this functionality tend to be expensive and require
considerable computing resources to be effective.
While it is true that one can purchase DBMS for per-
sonal computers, these systems do not possess all the
functionality discussed above and are therefore not the
focus of this paper. Rather, we are concerned with
systems that must deal with very large databases
(VLDB) (hundreds of gigabytes) and/or have a r.ai
time requirement (1 s or less response time).

Since the DBMS is just another application pro-
gram, albeit with considerable subprograms, it must
adhere to normal execution frocedures just as other
programs. The database user (a human user or aopli
cation program) interacts with the DBMS through a
query language (or other language) to accomplish a
task. The DBMS must interact with the operating
system to obtain data from the database which is
stored on the computing system’s secondary memory.
Since the operating system must satisfy a large number
of types of user, the size of the block of data retrieved
from disk is optimized for all users and is thus fixed.
The block of data is placed in main memory and turned
over to the DBMS which sifts through it to find what it
wants. There may be little data of interest to the
DBMS due to the organization of the data and type of
query. Thus, the DBMS may have to ask the operat-
ing system for many pages of data to satisfy a query.
This repeated access to secondary storage consider-
ably degrades the performance of the DBMS since the
access time to the disk is about one million times
slower than access to main memory. This disparity is
called the access time gap.

8. Oatabase Machines

A typical structure for a database machine is that of
a frontend-backend system. That is, the user inter-
acts with a sequential computer host which transforms
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the request into a series of commands that can be
executed by the backend database machine. The da-
tabase machine handles all database functions and
returns results to the host which then passes them on
to the user. There are many advantages of this config-
uration including removal of dependence on the oper-
ating system, reduction in the number of functions
performed (i.e., the database machine only executes
database functions), optimization of execution of cer-
tain functions (i.e., special hardware for relational op-
erations), mitigation of the access time gap problem
through parallel access to multiple disks and, in gener-
al, the advantages one has in solving a more narrowly
defined problem.

There are also disadvantages to this configuration.
These systems tend to be more costly and less available
than sequential DBMSs. There are dozens of univer-
sity and industry database machine projects but there
are just a few commorcially available products.’+
However, there are hundreds of sequential DBMSs. If
the problem being addressed is basically sequential, no
amount of parallelism will help; in fact it may even
degrade performance beyond that of a sequential
DBMS. For example, if a query consists of several
subqueries each of which depends on the result of the
previous subquery, the traffic across the host-data-
base machine interface will significantly degrade the
performance of the system.

As was previously pointed out, we are concerned
with VLDB and/or real time requirements; database
machines also address these requirements. Thus,
while there may be hundreds of sequential DBMSs
available, only the few of them residing on major main-
frame computers are able to address the requirements.
The comparison then comes down to large mainframe
systems with DBMSs vs database machines.

A problem addressed by most database machine
designs is that of parallel access to magnetic disk.
Their approaches are only partially successful since
the difficulty basically lies with the mechanics of the
disk. The speed of rotation ind the extremely small
distance between the read-write head and the disk
surface are such that the sustained transfer rate of
large commercially available magnetic disks :ops out
at ~3 Mbytes/s. The exception is multiactuator, mul-
tihead disks which can increase this rate but at a con-
siderably greater cost. Because of this current limita-
tion, database machine architects have designed their
systems to be able to accept and process data from
magnetic disks at these rates. However, if data rates
were available at 300 Mbytes/s, these database ma-
chines would have considerable difficulty dealing with
the situation. They would become compute bound
rather than [/0 bound as is currently the case. We will
return to this point later in the paper.

C. Applications Requirements

In examining data processing in general and data-
base processing specifically for their applicability to
botb near and far term applications, one is faced with a
varied and dynamic set of both operational problems
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as we}l as technological solutions. Rather than per-
forming the analysis on each of these problem/solu-
txot{/timeframe tuples, it is desirable to develop a ge-
neric analysis technique. Specifically, the technique
transforms the system requirements onto three inde-
Pendent axes: database size, bandwidth of communi-
cations to the disks, and processing rate as shown in
18. 1. The size of the database is shown on the verti-
cal axis and s measured in bytes. The bandwidth is
measured in megabytes per second and provides a
easure of what is required to access disk storage in
Solving a variety of problems. Another measure of
dwidth is the amount of query input data to the
system. However, this input communication band-
width results in considerable accesses to the disks as
well as increased processing requirements. Thus we
use bandwidth to refer to internal 1/0 bandwidth.
i e third axis represents processing rate. In mul-
su?t:r' environments a large query load generally re-
o in a large processing load. However, relatively
2101t complex queries can also result in large process-
g loads. But, in general, database management
Places more stress on 1/0 rather than on processing.
the a first example, suppose a sensor has measured
Signature of a radar and one must match this

signature against a library of known signatures in order
to take an appropriate response. Suppose that there
are 10,000 known radar emitter signatures, and a new
emitter appears every 100s. The required processing
time is not related to the input rate. However, this
application may require a match in 10 ms to make a
timely response. While neither the measured signa-
ture, nor the signature database has 100% validity, we
would like the process to be error free. Typically, the
measured signature will have certain parameters that
are correct and some that are in error. In a specific
report, the degree of error is uncertain and the match-
ing progress must allow partial/probalistic matches.
Thus, a single input may resuit in many internal pro-
cesses. This application is depicted as P, in Fig. 1.

As a second example, a contact comparison applica-
tion might have a database of the order of 10° bytes, a
contact report rate of 1/s, and a match requirement of
2/s. This application is depicted as P; in Fig. 1.

As a third example, a monopulse signal sorter takes a
set of measured parameters on a single radar pulse and
attempts to identify the source of the pulse from a
database of emitters known to be currently hearable.
In a complex environment, there may be 1000 emitters
hearable at one site, each emitting 1000 pulses/s. The
expected report rate is then 108 pulses/s. The current
database consists of the 1000 emitters. The time to
locate a match must be <1 us just to keep up with the
input rate. The front end sensor may produce errone-
ous results, for example, when pulses from two differ-
ent emitters are overlapping in time and may miss
puises that are too weak to be detected. This will
create two problems. First, there will be holes in the
database which will not be filled in without additional
manipulation of the database; and second, there will be
residual reports that do not correspond to any real
emitter. This application is depicted as P; in Fig. 1.

If one had an infinitely fast serial machine with, say,
100 Gbytes of memory, one could solve all the example
problems, but not necessarily in a cost-effective man-
ner. Similarly, a very large content addressable mem-
ory could be used to solve all the problems but would
be a gross overkill of certainly the first example. The
challenge, then, is to develop techniques to handle the
above range of examples, which are generic functions
of the application and the state of technology, to invest
resources in the minimum number of architectures to
solve the collective database processing tasks.

An important consideration is the cost of various
technological alternatives. For example, one can pur-
chase off-the-shelf chips at about $100/Mbyte and
disk memory at about $50/Mbyte based on commer-
cially available 256k RAM chips and 100 Mbyte disks.
The advantages and disadvantages of choosing chip or
disk with regard to database size, /O communication,
and processing rate can be argued in many ways de-
pending on the task at hand. RAM memory has a very
fast access time (200 ns) but is volatile while disk
memory is low (30 ms access time) and nonvolatile. In
contemporary systems, RAM appears in limited quan-
tity while disks appear in large quantity. But, with the
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relatively recent reduction in the cost of RAM, this
ﬁt:l[\):rtion is expected to shift dramatically in favor of

Returning to Fig. 1, no single architecture is best for
all the tasks at hand. Specifically for database prob-
lems, it depends on at least the three characteristics
given on the axes. For example, with P; a moderate
amount of data with little need for bandwidth or pro-
cessing describes the problem. In this case, there is
little requirement for special architectures for process-
ing the data or increasing the bandwidth to disk.

With P;, there is a need for the storage of large
amounts of data, so considerable disk storage is re-
quired. However, there are also moderate require-
ments for bandwidth to disk as well as processing
power. In this situation, parallel computer architec-
tures may be employed with some usefulness. We may
employ a variety of such architectures from single in-
struction-multiple data stream to multiple instruc-
tion-multiple data stream. The point here is that we
must now look to parallel architectures to keep up with
the processing load. Also, we must be able to access
considerable amounts of data so the bandwidth to
secondary storage must be high. This will require
parallel access to disks perhaps along the lines of com-
mercially available database machines.

The third problem, P;, is much more difficult to deal
with since it has such stringent requirements on all
dimensions. Optical storage may help with this prob-
lem due to its high density, but data will have to be
retrieved from the disk at a faster rate. Optical inter-
connects will definitely help because of high band-
width, and optical or electrooptical processing may
offer some solutions in the future.

0. Knowledgebase Management

Knowledgebase systems are composed of a knowled-
gebase of rules and facts and an inferencing mecha-
nism that is used to respond to queries using the exist-
ing knowledgebase. In the case of expert systems, the
objective is to capture the knowledge of experts in
particular domains and make it generally available to
nonexperts. Various knowledge structuring tech-
niques include semantic networks, production rules,
logic, and frames with the LISP and Prolog languages
in common use. Current expert systems tend to focus
on narrow domains, have small knowledgebases and,
therefore, have limited application. As these systems
expand and more general applications are considered,
increasing demands will be placed on the management
of the knowledgebase. The database of rules (called
the intensional database) will become large but the
major management problem will be in the access, up-
date, and control of the database of facts (called the
extensional database).

The above considerations have led to many research
efforts aimed at the interface and eventual integration
of knowledgebase systems and database systems.
Some systems are currently available that provide an
interface between a knowledgebase system and the
DBMS. While this allows for the management of larg-
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er knowledgebases, the performance of such systems is
less than desirable because of the slow interface and
the duplication of functionality of the two systems.
Another approach that is being taken is to extend the
capabilities of the knowledgebase system through the
addition of secondary storage management. Still an-
other approach is the addition of inferencing function-
ality to existing DBMS. All these approaches are
headed in the direction of an integrated knowledge-
base management system (KBMS) that possesses the
capabilities of both systems. However, when viewed
from a performance perspective, KBMSs will place
even more demands on the underlying data manage-
ment structures. That is why it is imperative that we
look to other technologies such as optics for possible
solutions.

l. Hierarchical Structure of Processing

The state of the art of electronic computing enjoys
considerable maturity. In contrast, optics as applied
to digital computing is very young and has yet to make
its mark. In assessing how optics may help database
and knowledgebase management, it seems clear that
the most impact will be felt at the lowest level. Thus,
the approach that we have taken in this paper is an
optoelectronic one in which we start at the very lowest
level and progressively move toward conversion to
electronics as indicated in Fig. 2. We examine various
types of optical storage media and devices to assess
their potential for use in database and knowledgebase
management. As will be discussed later, the potential
exists for enormous data rates from optical storage.
Since electronic database machines are designed to
deal with magnetic disk transfer rates, they will not be
able to handle these increased rates. This dictates
that we keep the data in optical form and do as much
processing as we can prior to converting to electronics.
We will discuss the type of processing that can be done
laterin the paper. However. our objective is to process
the optical data to the fullest extent possible so that, on
conversion, the data rate will be within the capabilities
of the electronic computer but more content rich. In
this way we hope to increase the performance of the
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system without disturbing the large investment in sys-
tem and user software.

V. Storage and Processing Strategy

A. Optical Disks

By far the most popular form of optical storage is
optical disks. These range from CD-ROMs to very
large disk units which allow for massive storage of
data.’§ Optical disks have a far greater capacity than
their magnetic counterpart but have a much slower
access and transfer rate. This is primarily due to the
mass of the read head and the slower revolution rate.
However, while magnetic disks appear to be approach-
ing technological limits with regard to access time and
transfer rates, optical disks have great potential for
vast improvements. This is true primarily because of
the relatively large distances between the read mecha-
nism and the disk surface. Through multibeam read-
ing the potential exists for massive data transfer rates
of the order of 300-500 Mbytes/s, a full 2 orders of
magnitude over current magnetic disks.

B. Content Addressable Memory

There have been several laboratory demonstrations
of associative memory.”? Variations of this approach
may be applicable for a content addressable memory.

One technique, using holographic memory, is to
store the data holographically and to provide feedback
with gain. This system, illustrated schematically in
Fig.3, operates as follows: The combination hologram
and resonant structure has transverse resonant modes
that are defined and limited by the images stored in the
hologram; that is, only resonant modes corresponding
toa holographic image are possible. A partial image is
fed into the hologram, which causes a more complete
image to be reconstructed from the hologram. This
Image receives gain in the nonlinear medium, and the
Tesonant structure resonates with that image. If a
portion of another image is input into the system, the
transverse mode associated with that image becomes
dominant, and after a few passes around the closed
Path with gain, that image is fully recalled. If more
than one stored image contains the image portion that
1sfed into the system, one image will start to dominate
d“{! to greater correlation with the input or the charac-
leristics of the noise in the system and, once the system
locks onto that mode (image), it stays on that image.

In a content addressable memory, it is desired that
all sets of data with a common part be retrieved. For
€xample, if the word Colorado is input to a database of
OPtlcal Society members, it should be possible to re-
ttieve al] appropriate names of members in Colorado
tither in series or parallel. Ina database/knowledge-

ase system, it is necessary that a partial input into a
file fetrieve all components of that file having that
Partial input. In currently demonstrated associative
Wemories, only one component would be retrieved and
the one retrieved would differ from time to time de-

Fig.3. Content addressable memory with feedback and holograph-
ic storage.”

pending on the noise state of the system. To change
the associative memory into a content addressable
memory suitable for database/knowledgebase systems
would require some means of recalling them all. A
perturbation of the system would be necessary to move
the resonant system to another transverse mode and
another output in the common file. Thus far, no such
demonstration has been made.

Another unresolved problem with holographic asso-
ciative memory (or any holographic storage system, for
that matter) is that the possible number of stored
images predicted by current theory is several orders of
magnitude greater than has been achieved experimen-
tally. More accurate analyses and simulations are
needed before these discrepancies can be resolved.

C. Page Oriented Holograms

1. Storage

Most massive database and knowledgebase systems
store data on magnetic or optical disks and employ
indexing techniques to avoid or minimize disk access-
es. Various clustering and accessing techniques are
used to reduce response time. Even so, when the joint
requirements of very large databases and very short
response times are imposed, existing technologies de-
grade considerably. In these cases, the ability to call
forth and operate on large pages of data in parallel
would offer a profound advantage over serial opera-
tion. Some of the issues discussed below are also
addressed in Ref. 10.

The basic concept of page-oriented holographic
memory (POHM) is quite simple. Many small spa-
tially discrete holograms are recorded on a single sub-
strate. Some are constructed such that whenever a
laser beam is deflected to one of these holograms, the
output 2-D image falls on a common surface for all
holograms. Of course, the whole 2-D image arrives
essentially in parallel. A 1-mm hologram, properly
made, can store an array of 104-10 bits which is a page.
An electrooptic or acoustooptic deflector can address
any of these stored pages very rapidly (10-4~1076 g).
Access tme is limited by iaser deflection times (109~
10~ s) or paallel readout mechanism response time
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[1074-1072s for currently available spatial light modu-
lators (SLMs)]. Using the worst (best) case numbers,
we can recall 10* (105) bit pages in any order from
among 104 (10°) such pages at a rate of 100 (10*) pages/
s. Thus the capacity of POHM ranges from a few
megabytes to over a terabyte while the transfer rate
ranges from <1 Mbyte/s or >100 Gbytes/s. We can
place an optically addressed SLM at the output as an
image amplifier to read the page into the optical sys-
tem in parallel. Figure 4 shows this basic system along
with the laser readout system for the SLM.

What the SLM produces is a modulation pattern (in
intensity, phase, polarization, etc.) but light comes
only from the portion of the SLM which is illuminated.
Thus if we illuminate the SLM addressed by the
POHM with light from a second SLM (electrically
addressed, intensity modulated), we can restrict entry
into the optical system to those portions of the page of
immediate interest. Figure 5 shows this part of the
system. For read-only POHMs, photographic or oth-
er conventional storage methods can be used.

Mulitiplexed holograms can also be stored in 3-D
photorefractive crystals.!!1? Two schematics of pho-
torefractive memory are shown in Fig. 6. In Fig. 6(a),
the ith image is stored by interfering the input image
with the reference (pump) beam when the photore-
fractive crystal is rotated to a specific angular position.
To read out the ith image from the photorefractive
memory, the input is turned off and the reference
beam turned on when the crystal is rotated to the
specific angular position. In Fig. 6(b), the ith image is
stored by interfering the input with a reference beam
of the ith phase code. (The photorefractive crystal
need not be rotated in this alternate scheme.) Toread
out the ith image from the photorefractive memory,
the input is turned off and the reference beam of the
ith phase code is turned on.

Presently, photorefractive crystals require millisec-
onds to store a hologram. The hologram writing time
can be reduced by using higher intensity beams. Itcan
also be reduced for strontium barium ~iobate (SBN)
by applying an electric field across the crystal. Re-
search for reducing the hologram writing time is under
way by increasing impurity doping levels in the pho-
torefractive crystals. To retrieve a stored image from
a photorefractive memory, the time required can be
much shorter than milliseconds and is determined by
how fast the photorefractive crystal can be rotated to
the desired angular position in scheme (a) or how fast
the reference beam can be switched from one phase
code to another in scheme (b). Using SBN:60, hun-
dreds of page-oriented holograms can be stored and
retrieved in real time.

Holographic storage is far from perfected despite
many millions of dollars of effort expended all over the
world in the 1970s. Uniformity among output pixels is
seldom better than 10-15%, signal-to-noise ratios can
be low, but, outside the Soviet Union, little work has

been performed on POHMs this decade. Great im-
provements arising from subsequent advances in ho-
lography and SLMs may be expected.
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Fig. 4. Page selection and readout. The deflector addresses a
single hologram on the POHM and a page of data is written in
parallel onto the output laser beam.
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Fig. 7. Pattern selection. We can use electronically addressed

SLM3 to write a reference pattern to be matched with the light

coming from POHM-driven SLM1. Fourier transform lens 1 jointly

transforms both outputs onto SLM4 where they add coherently.

Ancther readout beam addresses SLM4 which produces bright light

on the output plane where the reference pattern is matched with a
portion of the input beam from SLMI.

2. Processing

It will be of interest to search the illuminated por-
tion of the retrieved page in parallel for space-invari-
ant pattern recognition. Fourier optics is known to be
excellent for this purpose if we know ahead of time
what pattern(s) we want to recognize and prepare ap-
propriate pattern recognition masks. While this tech-
nique will be useful in certain cases, it offers insuffi-
cient flexibility for general DB/KB purposes, so we
must use other techniques such as joint transform
correlation.!*15 To do joint transform correlation, we
generate a reference pattern on yet another SLM and
use one lens to jointly Fourier transform both images
which must be illuminated by the same laser in such a
manner that they are mutually coherent in the Fourier
plane. There they strike yet another SLM which is
read out by yet another laser beam. That laser beam,
after reflection from the SLM, is again Fourier trans-
formed to produce an ouptut which resembles the in-
put page put is bright only where the reference pattern
appears in the page. This output pattern must be
thresholded optically (in parallel) or electronically.
Figure 7 shows this arrangement.

Finally, data must be copied from the page onto a
Scratchpad memory. Where possible, this too should
occurin parallel. If we assume that we can accumulate
data over time in parallel on a 2-D charge-coupled
device (CCD) array for eventual CCD readout the
Problem becomes one of illuminating only the right
g‘a‘ of the page (a problem discussed earlier) and

etlecting that light to the right part of the detector
array. A fast (microsecond) 2-D acoustooptic image
“:::‘:;’lf:s:ruildb})e ideal for this task. Figure 8 shows

a - . S
o e spacing grating can be used in this

Omitted from this discussion of basic methods are

8Wings of how all the parts fit together in one system.
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Fig. 8. Image shifting. The 2-D AO cell shifts the image in any
direction by changing the direction of light in the Fourier plane.

We believe that this will be complicated but perfectly
feasible using beam splitters (amplitude and polariza-
tion), reflex mirrors, multiple POHMs, etc. The sys-
tem, at least initially, will be large and expensive, but
the users of very large DB/KB systems are used to size
and cost now. What optics adds is high speed.

3. Two-Dimensional Access

It is possible, in principle, to move both the medium
and the beam in such a way as to use the fastest
available 1-D scanners, ».g., chirped acoustooptic cells,
with much slower medium translators to interrogate a
2-D data array at a bit rate approaching that of the fast
scanner. Suppose an N-bit fast-scan horizontal pat-
tern is available. Let the medium move vertically at a
speed S,,. Let the fast acoustooptic scan speed be S,
>» Sm. Then, by tilting the scan direction at an angle

s =tan~'(Sm/Sa)  Sm/S. <1

from the horizontal we can sweep out a horizontal path
at speed S,. By making rows correspond to attributes
or to ohjects in a relational database, this method could
allow up to gigahertz access to the interesting part of a
database.

By far the fastest access to a random bit and the
most bits read out in parallel result from page-oriented
holographic memories discussed earlier!¢ and shown in
Fig. 4. Let there be H? holograms (H X H array) each
presenting a B X B bit array to the SLM when illumi-
nated. The maximum deflection time is t,. Clearly,
any particular bit from the H2B? number of stored bits
can enter the optical system in an access time

T= mu(‘p.ts)-

where t, is the SLM response time. Probably, T = ¢
can now be 107¢s. For H = B = 103 (a very large
POHM since the individual holograms must be 1-2
mm), we have 102 bits accessible in 10~ s or 10!8 bits/
8. Even if we immediately convert the data to serial
format, we still have access at 10!5 bits/s. Neverthe-
less, the best course, if feasible, is to keep the page
operations parallel and, hence, optical for as long as
possible.

Another approach is to select one of an array of
holograms as before but allow each hologram to store
multiple images.!? If the images are angularly multi-
plexed, a 2-D acoustooptic cell at or imaged onto the
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hologram can allow selection of the desired wavefront.
If the images are wavelength multiplexed we must
adjust the deflector and tunable source jointly. A
hologram storing N images reduces the POHM area by
N. However, multiplexed holograms experience re-
duced signal-to-noise ratio or dynamic range.

D. Spatial Light Modulators

There are presently several spatial light modulators
(SLMs) which exhibit optical memory characteristics
and may be considered for page-oriented memory ap-
plications. They are microchannel spatial light modu-
lators,!819 ferroelectric liquid crystals,2-2 multiple
quantum wells,2%-27 silicon-electrooptic modulators,®
and thermoplastics.?®

1. SLM Storage

Fast, high density reprogrammable electronic mem-
ories are widely available. The electronic memory can
be divided into N(n X n) cells in an array format. If
optical input and outputs in the form of phototransis-
tors and optical modulators, respectively, can be added
to each of the NV cells of the memory array, we can
obtain an optically accessible N-port memory SLM
where N is the number of optical input-output ports.
This memory will be page oriented because all N-ports
arranged in the array format can be accessed in paral-
lel. The number of memory circuits in each cell will be
the depth of the N-port memory.

To provide the optical inputs and outputs for the N-
port memory, research on phototransistor design and
silicon-electrooptic material integration has been per-
formed.?8-30-32 With PLZT as the modulator material,
it is estimated that memory access time of 1 us is
attainable. Low loss polarization switching at micro-
second rates has been demonstrated with ferroelectric
liquid (FLC) crystals?® and photo-addressed FLC
SLMs have been demonstrated.22 New electrooptic
materials such as organic polymers and GaAlAs or InP
multiple quantum well structures?627 are currently be-
ing studied for access time improvements.

Depending on how the electronic memory in each
cell is organized, the N-port memory can be accessed
by address or by content. Depending on which and
how many cells of the N-port memory are activated,
pages of information can be retrieved in parts or in
their entirety.

2. Processing

It is also possible to perform logic using the SLM.33-36
If many (or some) of the memory circuits in each cell of
the N-port memory SLMs are replaced by logic cir-
cuits, we obtain an N-port processing SLM, which can
combine the processing power of silicon electronics
and the communication or interconnection capability
of optics. Depending on the design of logic circuits in
each cell, important processing operations such as
comparison and matching between new and stored
data can be performed in parallel. Furthermore, if the
N-port processing SLM can serve as the input of an
optical matrix-tensor multiplier, we can perform par-
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Fig. 9. Pattern substitution.

allel search for artificial intelligence.?”*8 By allowing
parallel readout from mass optical storage to address
in parallel the n X n ports of an N-port processing SLM
(with or without an optical matrix-tensor multiplier
attached), many well-defined processing functions can
be performed at high speed. Then, the electronic data
converted from such processed optical data will have
much lower data rates on the average, and the data will
be much richer in information.

E. Symbolic Substitution

In addition to parallel optical readout and parallel
optical data comparison it is also desirable to inciude
more complex optical processing operations, such as a
search with wildcards or a conditioned search before
the data are transferred to the electronic system. Cer-
tain requirements have to be met, however, by an
optical preprocessor for it to be applicable to database
systems.

1. Requirements for an Optical Preprocessor

In response to a user query, a large number of stored
pages are often called up from secondary storage even
though generally a large percentage of these pages are
not of interest. To reduce the information presented
to the electronic system, it is necessary to provide
parallel digital optical processing involving memory
functions and programmability and to match the pro-
cessing rate at which data are read from the storage
medium. A pipeline architecture is advantageous be-
cause the processing rate is more important than the
pipeline delay. The length of the pipeline can serve tc
adapt the complexity of operation to the requirements.

In addition to this time parallelism provided by the
pipeline architecture, spatial parallelism matching the
page size on the storage medium is desirable for pro-
cessing. A typical format consists of 2-Kbyte data
pages corresponding to 16 Kbits or a 128 X 128 size
pixel array. Operation on these arrays must occur at
the readout rate and be rich enough to perform useful
work. Finally, the optical processor should not be
fixed but programmable to adapt it to various de-
mands.
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2. Principle of Symbolic Substitution

A well-developed technique for optical digital pro-
cessing is symbolic substitution.324° This logic is able
toemulate Boolean logic, cellular logic, arithmetic, and
Turing machines. Recently a functionally program-
mable module was proposed.?! The elementary oper-
ation of symbolic substitution is pattern substitution
as indicated in Fig. 9. Each occurrence of the search
pattern in the input plane is marked in the intermedi-
ate plane by a bright dot. In the substitution phase
each of these dots is replaced by the substitution pat-
tern. These primitive operations are easy to imple-
ment optically and, with future developments in opti-
cal devices, can be executed extremely fast, because
the technique can be applied in parallel.

Symbolic substitution operates on binary matrices.
Logic can be performed by transforming all the occur-
rences of a given spatial configuration of binary ele-
ments into a different spatial configuration as shown
in Fig. 10. Several different transformations can also
be implemented optically in parallel. One optical pat-
tern transformation block consists of a recognition
part, an optical inverter array, and a substitution part.
Both the recognizer and the substituter parts are pas-
sive optical components and are matched to their cor-
responding search pattern and replacement pattern,
respectively. The inverter array is the active compo-
nent, responsible for thresholding and optical power
regeneration.

Processing can be achieved by applying several dif-
ferent pattern transformations, also called substitu-
tion rules, simultaneously. The parallelism of optics
thus is used at a low level to increase speed rather than
for high level parallel processing. Although these pat-
tern transformations are global or space invariant op-
erations (the same rules apply to all locations on the
array) it has been shown that this mechanism is also
able to support local operations.

The time for an N-rule pattern transformation is
independent of the number of rules and is given by the
Propagation time of light through the setup and by the
response time of the inverter array. For very fast
Processing, the propagation time, which could be of the
order of 1 ns, could be comparable with the switching
time of the inverter array. The progagation time cor-
responds to the latency of a pipeline processor whereas
the throughput depends on the switching time of the
inverter array. At high data rates, it is necessary to
avoid clock skew. Symbolic substitution supports in-
terconnects with a latency that is constant down to
femtoseconds.

Symbolic substitution also supports constant fan in
and constant fan out gates, because the substitution
Tules, specifying the search and the substitution pat-
tern, are fixed. This feature is important because
large fan out implies high power consumption and high
tlock rates can be achieved only if the gates are opti-
Mized with respect to a small and constant number of
Inputs and outputs.

Logic Function: Substitution Rules:

XOR _
0 0 0 6o — 0o
0o 1 1
1 1 0
i 0 —— 1
1 1 — 0
Fig. 10. EXCLUSIVE OR with symbolic substitution.
control controi control
—E T A T 1
atn — o " . —
right e 4 o wn and 2
SHIFT SHIFT LOGIC SWITCH
horz, vert.
data
Fig. 11. Functionally programmable module.

Architectually, one substitution rule is implemented
by one optical module. Several modules implement-
ing different substitution rules can be arranged either
in parallel or in sequence, thus forming an achitecture
for a processor. The functionally programmable mod-
ule? consists of a series of transformation blocks to
perform controlled shift operations and to perform
logic as shown in Fig. 11. Every bit in the array can be
programmed to m« e in four possible directions. The
logic set includes EXCLUSIVE OR, AND, and the identi-
ty operator. The program for this module is interlaced
with the data and enters as a stream of optical bit
arrays.

In an optical parallel pipeline processor, two types of
parallelism exist. The first type concerns the parallel
processing of many data within a 2-D processing array.
This type may be called spatial parallelism. Ina pipe-
line there is also a second type of parallelism. Ineach
stage of the pipeline, an array of data is processed
simultaneously, typically by different operations.
The degree of parallelism in a pipeline is given by the
number of stages. This type of parallelism may be
called time parallelism. For a database processor both
types of parallelism are applicable. If the processing
array is the same size as the readout array, the process-
ing stages have to be cascaded. Between those ex-
tremes any trade-off between lateral and longitudinal
complexity is feasible.
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V. Conclusions

Very large databases and knowledgebases (VLD/
KB) are at the heart of existing information systems
and will play an even more prominent role in the fu-
ture. These systems place extreme requirements on
existing electronic digital computer technology; re-
quirements that are often not met when VLD/KB are
present or real time responses are required.

Optics with its high speed and bandwidth has much
to offer for the solution of very large database and
knowledgebase problems. In terms of storage, optical
disks can hold in order of magnitude more data than
magnetic disks per unit area. Although optical disks
are currently slower than magnetic disks, the potential
exists for at least 2 orders of magnitude greater data
rates with multibeam reads. This potential, if real-
ized, would completely change the way database and
knowledgebase problems (as well as others) are solved.
In addition to optical disks, page-oriented holographic
memories hold considerable potential for performance
improvement of the solution to these problems. In
addition to storing massive components of data, they
offer ways to perform processing functions during data
retrieval.

The transport of digital data via optical fiber is well
developed and its advantages over electronic transport
are well recognized. It now appears feasible to remove

data from storage and send it through fibers to optical
processors without having to convert from photons to
electrons. This would have significant performance
advantages, especially if data can be read from storage
at hundreds of megabytes per second. Such rates
would flood current electronic systems since they are
designed for magnetic disk rates, which are ~3
Mbytes/s. This leads to new electronic systems as weil
as new optical systems. Since the data are already in
optical form, there are considerable advantages to pro-
cessing it optically before conversion to electronic
form. More research and development of digital opti-
cal processors that perform data and knowledge base
functions in parallel are needed.

In this paper we have considered many of the ways
that optics can play a role in the increase in perform-
ance of database and knowledgebase systems. We
believe that there is considerable potential for im-
provement and hope that this paper helps to encourage
active research in this important area.
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Page Oriented Holographic Memories and Optical Patfern Recognition

H. J. Caulfield
Center for Applied Optics
The University of Alabama in Huntsville
Huntsville, Alabama 35899

In the twenty-two years since VanderLugt's introduction of holcgraphic matched filtering, the intensive
research carried out throughout the worid has led to no applications in complex envirvonment. This leads ope
to the suspicion that the VanderLugt filter technique is insuffictently complex to handle truly complex
problems. Therefore. it is of great interest to increase the complexity of the Vanderlugt filtering opera-
tion. We introduce here an approach to the real time filter assembly: use of page oriented holographic
memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a
104 to 10* stored pattern base.

Introduction

Whether the twenty-two years of research on VanderLugt's (iltering has been successful or not depends on
how one defines success. From a researcher's point of view. it has been very successful. Literally hun-
dreds of Ph.D. theses have been written. Many papers have been written. Simply reviewing the review art;.
cles would be a significant task. Therefore, it has been a successful topic in generating research work
If. however, siiccess means application of this technology in the field from which most of the money has
come: (military applications). then the field has been far from a success. This paper has twao goals.
First., it seeks to offer an explanation of the apparent failure. Second, it offers a new approach which
attacks the problem identified.

Complexity

In numerical calculations. the word complexity has a well-defined meaning. I[f we regard the operat a nf
pattern recogniton as a well defined numerical operation, we could define the complexity of that operatian
On the other hand, there are a variety of pattern recognition schemes ranging from correlation with a single
prototype to correlation - "t a large bank of prototypes tu far more complex operations perhaps involving
motion of the mask and. or :oject. The scene itself has complexity. One measure of this is its information
content. This, howe.er _s somewhat misleading. If we mean by complexity the difficulty of the problem.
the difficulty arises .ot just froam the amount of information that can be packed into a scene not from the
within-class and hetween-class variations ot realistic objects. If we model human pattern ognition as a
syntactic process with a vast store of rather flexible prototypes. pattern recognition is probably an NP
problem.

The peoint of all this is that realistic problems involve tremendous variations among a vast number of
possible prototypes. The idea that one or even a bank of a thousand filte: could be adequate to such a
task seems, on the surface, highly improbable. There is simply not enough stored information to do the task
properly. [ believe that this is one of the fundamental reasons VanderLugt filtering has failed to give
adequate results for truly realistic complex situations. [f this analysis is correct. there is only one
pussible solution: vastly increase the information available to do the filtering.

Exhaustive Versus Nonexhaustive Search

If we are to store and search a truly vast amount of information, we must reexamine the previous inclina-
tion toward exhaustive search of the memory. Clearly. human beings do not employ exhaustive search in their
pattern recognition. In reading these words you are searching known patterns of English letters and words
using the context of knowing that this is a paper on optical pattern recogniton being written in English
and, for some of you. even knowing something of the style of the author. Therefore, you do not have to be
searching that part of your memory which deals with the names of your pet dogs or of words in foreign lan-
guages or of the map of your city. This represents a compromise between speed and thoroughness. That com-
promise can be accomplished in many ways. JNevertheless, the important thing for these purposes is to
recognize that the compromise was necessary and wise.

The Applications of Page Oriented Holograhic Memories

As is known to a great many of the readers of this paper. page oriented holographic memories allow stor-
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jtself can be changed. Currently. this is in the region of ] milisecond per frame, but one microsecond
frame time spatial light modulators are currently being constructed at various locations. Thus, at the
extreme, we could do an cxhaustive search of a million spatial light modulator patterns in the time of one
second. Because one second is usually too slow and also because we do not wish to digest that much informa-
tion each second, it seems prudent to consider intelligent nonexhaustive searching.

tored Information for Pattern Recognitjon

Because the spatial light modulator is limited to the range of 10* to 10* pixels. we must be clever in
the way we use the stored information. By comparison with a film hologram. for instance. the spatial light
sodulator may contain only a fraction of a percent of the information content. Two approaches seem reaso-
nable. One is to desigh pattern recognition kiniforms using yet-to-be-dileanated rules for working in this
pixel impoverished environment. The other approach is to store not the filter but the object whose complex
conjugated Fourier transform is the filter. We use that "image" to be one input in a joint transform corre-
lator. The balance of this paper is written in such a way as to be independent of that particular choice.

Mask Management

Perhaps the most important feature of the massive memory optical pattern recognizer is the intelligent
use of the stored data. That {s, the plan for appropriate nonexhaustive search. Because random access to
any of the stored patterns can be achieved so rapidly, the physical arrangement of holograms on the common
substrate is essentlally of nn importance. On the other hand. the data oase management in the electronic
domain that determines which hologram is addressed at any instance needs to be designed very carefully.
Thus. as is often the case, it i{s electronics and not optics that represents the ultimate limitation. We
now explore some of the possible data base management concepts which are appropriate for optical pattern
recognition.

It may be that what we want tn do is arrange the memory in terms of object parameter variatjons. Those
variations may be due to range and/or orientation of the object relative to the observation system. Also
stored might be wavelength of those patterns. In any case, there is a multidimensional parameter space
which must be searched. This would appear to require a multidimensional tesselation of that space after
appropriate scale and distortion of that space to reflect importance and in realistic variability. What is
then needed {s a lookup table which transforms parameter sets to x-y deflection to call forth the proper
mask information from the hologram. Thus we must design a sensible map from the many dimensional space to
whatever arbitrary two dimensional pattern we have used to store the data on the hologram. It is not my
purpuse to discuss the design of multidimensional lookup tables in this paper.

One obvious use of the hologram or holograms is to do exhaustive search by category. The hologram or
holograms can be organized in such a way that they are restricted in category or context. For instance in a
military environment, one might wish to apply entirely different sets of masks for target acquisition, tar-
get tracking. and terminal holding. These can represent separate regions on the hologram are even separate
holograms. Again, it is not so much the organization of the hologram as the organization of the electronic
addresser that is of importance. If the number of contexts or per categories is sufficiently large and suf-
ficient fuzzy, it may be that it is sufficient to specify a context and do exhaustive searching with that
context. This represents a two level organization. The first level is to determine the appropriate con-
text. At the second level, we simply do exhaustive searching. From here. it is not hard to generalize to a
multi level search. Broad context are sought and then narrow context sought within those. This establishes
a tree structure.

It is possible to consider composite masks or as variously termed "linear combinations of matched
filters” (1) or "composite matched filters"” (2). We accomplish positive weightings by sequencing through
all of the positively weighted components and varying., for example. the intensity of the laser beam. The
time integrated correlation plane pattern is then stored. Next., we generate the sum of negatively weighted
components in a second memory. Finally, we sub stract the two integrated images to obtain the desired
results. We then have the potentiality of generating quite general filters simply by controlling the
wajtings. [Implicit in this {s the assumption that we can run through a wide variety of masks very rapidly.
Even with the slowest of current spatial light modulators, it takes only two frames to do a general compos-
ite matched filtering. That is because we are averaging or integrating during the entire cycle. The
weights can be predetermined or even adaptively determined.

Conclusion

The material just presented is an outline of one approach to the vast increase in complexity that is pro-
bably needed to make optical pattern recognition practical for many purposes. Because the page oriented
holographic offers storage and access capabilities far beyond those which can be offered electronically. the
value of optics is enhanced. That is, this is a clear {llustration of a case in which optics can make prac-
tical what would be essentially impossible electronically. As with any new solution, this one carries with
it a great many new problems. [ hope that the outline of these problems is greeted as an opportunity for
invention and not as an excuse for inaction. Any time we have an opportuity to do something important that
cannot be done electronically, we should explore that opportunity carefully.
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PAGE ORIENTED HOLOGRAPHIC MEMORY ADDRESSING OF OPTICAL BISTABLE DEVICES ARRAYS
H. J. Caulfield

Center for Applied Optics, The University of Alabama in Huntsville
Huntsville, Alabama 35899

Abstragt
Page Oriented Holographic Memories can be used as stored aicroprograms. Because they may not give

highly accurate signal levels, e.g. to 0.1% as may be needed, these holograms should address not a device
array but an array of optical bistable shutters through which adjustable stable light beams may pass.

Page Oriented Holographic Memories

Their Glorious Past

There was a time in the mid 1960's and 1970's when page oriented holographic memories (hereafter, POHM's)
held center stage in the world's holography effort. The United States efforts included massive efforts by
IBM (Lohmann, Bryngdahl, etc.) and AT&T (Collier, Borckhardt. Lin, Anderson, etc.) The most massive
European effort was by Philips. The hope was to build a read-write memory of gigantic storage capacity
(say, 10'° bits) with exceptional random access time (say, 10-* seconds). This 10'® or better bit per sec-
ond random access memory was to fee the hoped for supercomputer of the 1980s.

The basic concept (1) is extremely simple. The first Figure illustrates {t schematically. Many small
holograms were to be formed on nonoverlapping areas of the same substrate. A 1nm diameter subhologram amight
produce an image of a 1024 x 1024 array of on - off points. The real image from each subhologram is formed
at the same place in space. At that place an array of parallel read out detectors was to be placed. By
deflecting a laser beam so that the proper hologram was illuminated, we could cause any one of the stored
point patterns to hit the parallel detector array essentially instantly. Deflectors of nanosecond random
access capabilities were built. Careers were built. Soon, however, the projects were abandoned.

What went wrong? In a word: everything. The search for a suitable read-write material failed. The

ultimate use failed to materialize as did arrays of 1024 x 1024 parallel readout 1 nanosecond detectors. It
was never clear how supercomputers could use that much data at that rate.

Their Ingloriocus Present

Across the world, POHMs are dead. It is not even a serious research field. The sole exception to this
sad tale is the Soviet Union which has what appears to be a significant effort in this field. Someone., we
or they, is wrong.

Why are the Soviets doing this? 1If we only read their English language publications {2). the answer
becomes clear.

Their Glorious Future

The future of POHMs is optical computing. We use the POHM to reprogram an optically addressed spatial
light modulator (SLM). SLMs are, at last, becoming fast. Parallel read in and parall!e! read out are tri-
vial. Furthermore, for many purposes, a read only POHM suffices. Every objection to the POEM firom the
1960s has vanished in the ]1980s.

Uses With Optical Bistable Device (OBD) Arrays
Enabling

We may wish to use the 0BD array for blocking unwanted interconnections. For iastance an optical cross-
bar could be formed using an X x N OBD array to perform 1 to 1 connection of N sources to N rece:vers (3).
For each of the N? possible {nterconnections there is precisely one on-off pattern for the OBD-array that
achieves it. The signal beams themselves can be relatively weak so that even N of them will not switch the
O0BD. A POHM could then be used to switch (enable) the appropriate 0BDs. Wavelength. polarization. angle.
or sowe combination of these can separate the signal beam from the stronger enabling beam. FParallel
addressing makes the reprogramming fast (limited by either the OBD or the light deflector)
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Optical Fredkin Gate Arrays

In a prior publication (4) we showed that optical Fredkin gate arrays allow

¢ logic (all tunctions),
e memory, and
e Iinterconnections.

A pending publication (5) shows that N(N-1)/2 Fredkin gate array can make an N x N optical crossbar switch
If the array can be addressed optically it can be switched by a POHM. All of this is of interest to an OBD
conference only if OBD Fredkin gates are possible. We now show that they are.

An ordinary logical gate is really a nonlinear function generator. Two input binary variables (A and B)
generate a binary output C. Since there are only four possible A, B patterns., C is often represented by a
truth table. The truth table for the AND function is shown below.

—— 0 O P
-—o — 0O W
o OO

There are fewer outputs than inputs, so information is lost. For example. if A AND B is 1. we can no longer
say what values A and B had.

A Fredkin gate conserves information. The next Figure shows a Fredkin gate schematically. There are
three inputs (A, B, and C) and three outputs (A'. B', and C'). Given one set of three, we can infer the
other set using

C'— ¢
IF IF
C=0 C=1
A'e~A A'—=R
B'—8 B'«—A

Reference 5 and other references therein show that such gates can perform all logical functions, many memory
operations, and quite generalized switching.

We turn now to OBD Fredkin gates. One way to assemble one of these is shown below.

> |
g

The intensities of A and B are below threshold and so is their sum. so with C=0. the OBD reflects achieving
A'=A and B'=B. With sufficient applied signal (C=1), the OBD transmits giving A'~B and B'=A.

A second version is shown in Figure below. The A states is vertically polarized. The B state is verti-
cally polarized. An ordinary

Y

INN

~
>

v

beamsplitter (0BS) directs light to a polarizing beamsplitter (PBS) which directs the vertically polarized
light down to form A' and transmits the horizontally polarized light to form B'. Thus in the reflective
mode of the OBM (C=0), A'=A and B'=B. When the OBD threshold is exceeded (C=1), the vertically polarized
light A, is reflected into the B' channel and vice versa.
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A third version, preferable to the second for cascading, marks A and A' with vertical poiarization and 8
and B' with vertical polarization. This is easy to do as shown in Figure below.

0BD

ve XN
[

PBD

LT3 awe

Also shown in Figure above is a lossless recombiner.
Let us represent a generic OBD Fredkin gate as in Figure below.

4 Al

Mot
/LN

B'

We can then coubiqe these in various ways (6). For example, to connect a linear array of 2¥ sources to a
Iinear array of 2" detectors we need 2N layers of OBD Fredkin gates as indicated in Figure below for N=2.

e L/ ~—
N | N
//'
N

e
d
v K\\\.__.._....__...__-.-—’/------------—-

[f we use a POHM to switch the N(N-1)/2 OBD Fredkin gates, the switching time is limited by the slower of
two times. the detector response time or the laser deflectiocn time.

CONCLUSIONS

Optical bjstable devices (0OBDs) can be viewed as optically controllable operators. Arrays of optical
bisrable devices can be "programmed” by patterned lighe from any of 104 to 10% holograms any of which can ko
accessed in a laser deflection time (from milliseconds mechanically to microseconds acoustooptically to
tu nanoseconds electrooptically). If the ORDs can respond in nanoseconds., this represents the switching
speed.  Alrnaugh 104 ta 10% [s a large number of “programs,” it is certainly finite. 1In this sense we have
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OPTICAL MAPPING APPLICATIONS
H. J. Caulfield
The University of Alabama in Huntsville, Center for Applied Optics
Huntsville, Alabama 35899
ABSTRACT
Holography can be used for arbitrary, parallel, weighted mappings between planes with up to :o 10°
pixels each at [/0 limited rates. This allows precalculated mappings to occur at very high speed. The

applications for one-to-one, one-to-sany, sany-to-one, and aany-to-many maps are explored here.

1. _INTRODUCTION

Recently (1,2). I have shown that it is possible to map large .aput scenes (up to to 1000 x 1000) into
large output scenes (up to l000 x 1000) using arrays of holograms. Figure 1 shows a schesatic drawing of a
passive (Spatial Light Modulator or SLM) input system. Figure 2 is a schematic drawing of an active (source
array) input. We will devote less attention to the hardware than to the applications {n what follows.
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Pig. I. An NXN hologram arrsy (s imsged onco an NXR ocutput scray through
an SLN. Each hologrea {llusinates the SWM with & unique pattern
of light. All work ia paczallel.
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SYSTEM SCHEMATIC
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Fig. 2. Aa Active Massive Intercomnect System Using
An Acray Of Modulated Sources As The I[nput.
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Pig. 3. One Way of Representing A PFour-
Dimensajonal Space in Two
Disensions.
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The three types of sapping of interest below are one-to-one, one-to-many. and many-to-msany.

- ONE-TO- MAPPIN

This applications is sometimes called "coordinate transformation.” Some familiar transforsations are

X,y - r,0
Polar
r.0 - X,y

- log(x).log(y)
- exp(x).exp(y)

etc.

The patterns are calculated and embodied in holograms. The transforsations are then speed limited by
Input/Cutput or /0.

It is not necessary that the mapping have a geometric intsyrpretation. For exasple, x and y could be
the first two principal coaponents {n an N dimensional feature space (the two orthogonal vectors in that
space along which beat separation among events occurs). Thus the x-y location of an event gives a closest-
category interpretation an a probability mseasure. We can use as an output one dimension along which catego-
ries are arrayed and a second dimension which gives the probability scale for that event.

Likewive mappings need not be confined to two dimensions. We can represent N dimensional spaces by
positions along a one-dimensional space filling curve. Or we can sample the space in some more pictorial
fashion such as shown ian Figure 3.

In principle, we do not absolutely require uniform spacing in either the input plane or the output
plane, so, for example, uniforaly spaced x, y points can be transformed into nonuniformly spaced y,0 points.
This allows an "exact” (no interpolation/extrapolation) sapping. This can present an accuracy problea if {t
requires the holograms to overlap.
. __ONE TO- MANY-T0-0 MAPPI

A good example of the use of holographic many-to-one mapping {s in an optical Dempster-Shafer (D-$S)
evidential reasoning machine (3). It is easy to show that to update our beliefs on the basis of new evi-
dence using vector outer products to "correlate” evidence and holograms to route

- outer product terams consistent with proposition Pt to a detector to give the unnormalized sup-
port $; outer product terms inconsistent with Pl to a detector to give the unnormalized doubt Dl' and

- mutually inconsistent outer product terms into a single detector to give a term I.

We then calculate our new beliefs
by = (Sy. Py)
about proposition Pl' where
8, = support for Py = $§,/(1-1)
and
P, = plausibility of P, = [1-(D;/(1-1))].

A good one-to-many apyllchtion is the Hough transfora. In a Hough transfora for parametric fit of
straight lines to x.y input points, we might use equations of the form

¥ = ax+b.

The s°raight lines through the point X ¥, satisfy

o
b= “K BV,

That is a point in the x.y plane maps into a straight line in b.m space. Two points map into two atraight
lines. The intersection of those lines gives the b and m of the line through both points. Many x.y points
lead to many intersections in b.m. On the other hand, points "pile up” near b,a points which represent mul-
tiple point straight lines in x,y. With this sethod we can do large Hough transforms in O(1l) time (~ amflli-
seconds due to [/0).
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4. MANY-TO-

\PPINGS

There is evidence that biological reasoning uses mapping of information from one “frame of reference”
to another (4). Locations representing aultiple data coincidence neighborhoods can map into decision plane
nelghborhoods in another plane.

of course., the ultimate computer goal {s intelligence. The physical basis for an intelligent computer
gust be highly complex. To achieve useful intelligence, we will need high speed as well. Using this aethod
we can interconnect each of a 1000 x 1000 input array to each of a 1000 x 1000 output array fully in
parallel. This combination of complexity and speed (e.g. 10'" interconnections in a millisecond or 10'"
connections per second) could serve as the physical basis for true intelligence if much more attention is
devoted to how to transduce cognitive concepts into the appropriate form of entry into this systes ( ).

S. CONCLUSION

The ability of optics to perform full {nterconnection from a large input array to a large output array
in parallel creates sany new possibilities. Fast algorithms, e.g. for Hough transforms. are not needed. (f
we need the speed and can afford the hardware, they can be done in the time required for 1/0. Advanced com-
putational methods which would be too slow with partially serial electronics become feasible with parallel
optics. In particular sassive neural networks fit in this category.
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STACKED PAGE ORIENTED HOLOGRAPHIC MEMORY
H. J. Caulfield

The University of Alabama in Huntsville, Center for Applied Optics
Huntsville, Alabama 33899

ABSTRACT

While page oriented holographic memories are extresely valuable, they can take a great amount of lateral
space. We show here how to stack a number of holograms in such a way that we can select one layer to be
"active.” As a result, the lateral area needed to store a given nuamber of holograms is reduced by L, the

1.__INTRODUCTION

Conceived of by Saits and Gallaher (1) as a computer memory, the Page Oriented Holographic Memory (POHNM)
appears to have found sany applications in optical computing (2.3.4.5.68). The basic POHM geometry is shown
in Pig. 2. A laser beam is deflected to the proper subhologram. Whatever holograa is illusinated produces
an output light pattern at a preselected location. In optical coaputing, we normally use an optically
addressed spatial light modulator at that location.

F1a. 2. LIGHT ENTERING FROM THE LEFT CAN BE
DIRECTED OUT ANY OF THE CELLS.

The primary problem with POHMa is that the subholograms need to be one to two millimeters in djameter.
If we want to have, say. a 1000 x 1000 array; we need at least one square aeter of substrate.

The goal of this work is to find a way to compact the POHM laterally by extending it longitudinally into
L layers. If we can then select the layer of interest, we can address by x. y, and k, where k is the index

2. _LAYER SELECTION

Polarization seems to be the most logical layer selection method. A longitudinally Pockels cell can
change the polarization of the light passing through it. A second longitudinally Pockels cell can change
the polarization back to its original state. Thus, what we want is a POHM which works for one polarization
state but not for the orthogonal state. Por many years | have sought suitably asymmetric holograms. The
only hologram with a truly massive asymametry [ have come ug with (thanks to Steve Case and Tosascz Jannson)
is a thick hologram in which the rays are diffracted by 90 inside the hologram. For a variety of reasons,
this is not a good solution for stacked POHMs. Thus I turned to what [ call “polarization transducers” -
devices which convert polarization into other properties.

A polarization transducer is a device that changes polarization (which i{s easy to control) into some
other property which might be more difficult to control. I[n particular, having had some previous experience
in using polarization switches and birefringent prisas to direct light to suitable holograms (2). I thought

to apply this technclogy to stacked holograms. What now follows is a step by step description of the
buildup of a stacked holograa array.
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onsider a single element as shown in Figure 1. Depending on the polarization state, which
dop::::t;u-:h:.rngldonco polarization and whether the switch i3 on or off, light is either transmitted
through the prisas or deflected downward. The light which continues to propagate can enter other such units.
The light deflected downward strikes a hologram on the bottom side of the priss. Thus, that hologras i{s
eliminated or not eliminated depending on whether the polarization of light passing through the switch is

proper.

Second, we can stack a large number of these longitudinally. Figure 2 shows the scheme. Clearly. one
addressing beam can address any of those holograms.

. Now, wherever we put a beams
, we can arrange a plane filled with such devices as shown in Figure 3

.1o::1:dx:n.. we can readout from a particular layer. That is, we can address a two dimensional array of
hologress via a one dimensional scan plus polarizstion switching of layers.

Polarizing
Besasplitter
Peism

Hologram
Longitudtaal s !
Pockels Cell

7ig. 1. Light is {ncident of a polarization switch vhich

eicher rotaces the plame of polarization 90° or F1g. 3. By EXPANDING THE PRISMS AND CELLS CONTIN=

leaves it ynrotated. The light then enters a .

polarizing prism. Depending on the polarization, UOUSLY WE CAN MAKE A SHEET OF CELLS OF THE

that prl;°ttll-1tl or deflacts the beam down- Fie. 1 Tvee. TH; DIVISIONS, SHOWN DASHED,
d b . A holy he & £ ch

prim can, therafore: be sddressed. . He secims CORRESPOMD TO SEPARATE LISHT PATHS BUT NOT

that the hologram 1.! highly efficient, trans- TO PHYSICAL DIVISIONS.

uitting at wost 10 ° of che incideat lighe.
Such holograme are now routine in dichromated
gelatia.

Fourth., we come to the most difficult part of stacking these layers on top of each so that we fill a
three dimensional space full of accessible holograme (Pig. 4). The problem with this scheme is that each
layer must be readout through all layers between it and the target plane. Those layers contain a variety of
switches, prisms and holograms. It remains to be seen what quality of image can be formed through these.
Also polarization effects could be disastrous. What is certain., is that the exposures must take place
through all intervening sedia. Holograms so recorded can compensate for a great sany ainor refractive
defects. One the other hand, they cannot compensats for changes in polarization or for light bent away from

the region of the hologram itself. 1In all likelihood, it will take considerable experimentation to learn to
do this properly.
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=== REAL SURFACE

= = = CONCEPTUAL
SURFACE

Fia. 4. In e 3D VERSION, THE POCKELS CELLS ARE
CONTINUGUS [N TWO DIMENSIONS WHILE THE
PRISMS FALL INTO DISTINCT LAYERS BUT ARE
CONTINUOUS WITHIN THE LAYERS.

The primary effect of the scheme we have just discussed is to fill a three dimensional space rather than
a two dimensional space with page oriented holograms. This is clearly a better use of space than the tradi-
tional POHM. On the other hand, such remains to be explored coancerning how well holograms can perfora
through layers of other holograms. Some sort of quasi Fourier transform holograa seems indicated. see Fig.
5. To select a hologram, we select a layer by switching one of the Pockels cells and then deflect x-y
position.

Hologram -
Prism 3D Array

Lens

Output plane at
focus of the lens
and off axis co
the lens

F16. 5. EACH MOLOGRAM CAN BE A FOURIER TRANSFORM HOLOGRAM,
SO THERE 1S A COMMON OUTPUT PLANE, THAT PLANE IS
OFF AXIS 50 EFFICIENT HOLOGRAMS CAN BE ' ADE. AN
EXAMPLE HOLOGRAM SELECTION IS SHOWN,
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APPENDIX D
MISCELLANEOUS APPLICATIONS

1. FREDKIN GATES

The initial papers in this field (Appl. Opt. 25, 1604 and SPIE 625,
2) stirred much research and is widely cited. It has led (not sponsored by
ONR) to sub KT operation of optical processors. Our ONR sponsored
work was on various applications such as rapidly programmable switches
(Appl. Opt. 26, 1032), new configurations (Appl. Opt 26, 3455), and a
more compact residue arithmetic architecture (Appl. Opt. 26, 3940.

2. PATTERN RECOGNITION

Despite the wonderful invariance properties of prior recognition
masks, they were very difficuit to manufacture. We showed how to
simplify mask design and manufacture tremendously (Appl. Opt. 26,
2311; SPIE 613, 260; and Appl. Opt. 27, 2895). This work has led to
much other work (still ongoing under other sponsorship at several
institutions).

3. NEURAL NETWORKS

While neural networks are the obvious application of massively
parallel optical interconnections, they present huge accuracy problems.
We showed the first general way to train neural networks for low accuracy
operation (IEEE Trans. Systems, Man, and Cybernetics, accepted). We
then mapped out a general approach to utilizing the new-found complexity
capability (WNN-AIND 90 AND IJCNN 90).

4, FUNDAMENTAL BOUNDS
One of the most cited papers from this whole contract is the

demonstration that parallel optical processors have a fundamental speed
limit of about 0.01 GH® (Appl. Opt. 26, 1567).




Optical computing and the Fredkin gates

Joseph Shamir, H. John Caulfield, William Micelli, and Robert J. Seymour

The use of optics to implement the Boolean logic functions traditionally used in conventional electronic
computing is an active area of optical computing research. Many proposed optical implementations duphi-
cate the configuration of electronic logic gates and hence may not optimally utilize the full benefits of optical
techniques. We present here a new optical gate, the Fredkin gate, which may. in principle, be minimaily
dissipative (i.e., exhibit reversible logic) and whose response time may be limited in some implementations
only by the duration of optical puises (i.e., in the picosecond range). Such gates, which consist of three input
and three output lines, can be programmed to produce a standard set of Boolean functions and appear well
matched to the parailelism of optics. We present here a number of opticai implementations of Fredkin gates
and suggest ways of composing their interconnections to achieve combinatorial logic. circulating memories

and generalized interconnects.

.  introduction

*“The energy requirements of basic logic operations
ultimately impose fundamental limits on achievable
computation rates and all largely independent of de-
vice implementation technology.” ! Part of this ener-
gy consumption is due to the intrinsic nature of the
traditional composition of logic elements. This fact
becomes evident if we recall that a conventional logic
gate has more input lines than output lines. Thus
some of the information coming into the gate is lost
and cannot be retrieved. The irreversible nature of
the gate makes it dissipative not only in information
buc also in energy. In an effort to overcome these
limitations, Fredkin and Toffoli? proposed a new kind
of logic gate which has the same number of output lines
as it has input lines. Fredkin gates are capable of
performing conventional logic operations while pre-
serving all the original information. In contrast to the
conventional logic gates the Fredkin gates may, in
principle, be run backward to regenerate the original
input signals.

The purpose of this work is to introduce the optical
Fredkin gate, illustrate its programmability, and sug-
gest it as a basic building block of an optical computer.

'Roberl Seymour is with GTE Laboratories, Inc., 40 Sylvan Road
V‘\allham. Massachusetts 02254; W. Micelli is with Naval Ocear;
bystems Center, San Diego. California 92152; the other authors are
with University of Alabama in Huntsville, Center for Applied Op-
tics, Huntsville, Alabama 35899.
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An overview of the main aspects of the Fredkin gate is
given in the next section followed by a variety of pro-
posed optical implementations. A number of useful
configurations are discussed in a final section.

1. Background of the Fredkin Gates

The basic Fredkin gate is defined as a black box
having three binary inputs and three binary outputs
(Fig.1). The C-input, the control line, determines the
operations of the gate on the other two inputs accord-
ing to the following rules:

C=(
if C=0:A'=A; B =B ot
if C=1:A'=58; B = A

It is quite evident that this gate is reversible; i.e., it
may be run backward to return to the original inputs.
and, therefore, it is in principle nondissipative. [The
original definitions used in Ref. 2 are the inverse of Eq.
(1); however, we find this definition more intuitive and
more suitable for optical implementation.]

Using the three inputs and the three outputs of the
Fredkin gate, one may implement the traditional logic
gates that usually have two input lines and one output
line. To make the comparison easier, in the examples
of Fig. 2 we leave the lines corresponding to the con-
ventional gates straight while the other lines are shown
bent. InFig.2(a) an AND gate is implemented keeping
the a input at the 0 level and obtaining the required
output of the A’ line. Unlike conventional gates. we :
obtain two additional outputs that we may utilize or
ignore. In asimilar way, one possible implementation
of an OR gate is shown in Fig. 2(b). It can be easily
shown that any other function, such as NOT. FAN-OUT.
FAN-IN, and FLIP-FLOPs, is also easily implemented.
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Fig.2. Logicgatesimplemented by the use of Fredkin gates: (a)an
AND gate; (b) OR gate.
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Fig. 3. Polarization switching gate.

In the next section we discuss a number of ways to
implement the Fredkin gate by optical and electroop-
tical means.

. Optical implementations of the Fredkin Gate

For applications in logic networks one is usually
interested in logic gates containing nonlinear bistable
elements. The basic configuration of a Fredkin gate,
however, is not restricted to digital signals, and, in
principle, one may use these gates for processing ana-
log signals as well. In the examples that follow the
nature of the control signal will determine the actual
response of the gate.

A. Polarization Switching Gete

A polarization switching gate isshown in Fig. 3. The
a and b lines correspond to two orthogonal polariza-
tions of a light beam (or a waveguide channel of an
integrated optical system) traversing an electrooptic
modulator that rotates both polarizations by 90° when
activated. The activation is induced by the C-line
either by a direct electronic pulse or, as shown in the
figure, by an optical signal transduced to an electronic
signal using a photodetector (photoconductor or pho-
todiode-amplifier combination). Polarizing beam
splitters may be applied whenever a spatial separation
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Fig ' Acoustooptic gate.

is required between the A and B lines. The main
advantage of this gate is its relative simplicity, while its
disadvantage is the different nature of the C-line that
also changes level during transition through a gate (i.e.,
there is a lower light intensity in C’ than in C; this
effect may, however, be corrected by incorporating an
amplifying medium on the line).

B. Acoustooptic Gate

In Fig. 4 we show a schematic diagram of the acous-
tooptic gate: The two input lines are laser beams
incident on an acoustooptic deflector (either bulk or
integrated SAW) at the Bragg angle. If there is no
acoustic signal (C — 0), the two beams continue unaf-
fected (A’ and B’), while if C is present each beam is
deflected into the other channel. This is also a simple
gate, but here too one has a C-line which is basically
different in nature than the other two lines. Never-
theless, this kind of gate can be easily cascaded and
integrated. For example, a single acoustic pulse may
activate many gates as it travels along the system.

Of course, any 100% efficient gateable diffractor will
suffice. Suchdevices are possible in integrated optics.

C. Photorefractive Gate

The photorefractive gate based on four-wave mixing
is an all optical gate with one of its tentative implemen-
tations illustrated in Fig. 5. In this case the C-line
constitutes the two pump beams. The inputs A and B
are transmitted if C is absent and phase-conjugated
when the pump is present resulting in switching be-
tween the outputs.

D. Waveguide or Coupler

In optical communication and integrated optical
systems a modulated waveguide or fiber coupler may
serve as a Fredkin gate. Two general classes of this
kind of gate may be implemented. The out-of-plane
control is shown schematically in Fig. 6(a) and the
in-plane control with one possibility depicted is Fig.
6(b). A number of workers have already implemented
the electronically addressed coupler*5 that may serve
as a Fredkin gate with an electronic C-input. Tosym-
metrize the system one may use photodetection com-
bined with the electrooptic coupler to facilitate optical
control. A more advanced technology would be the

15 May 1986 / Vol. 25, No. 10 / APPLIED OPTICS 1605




Fig.5. Photorefractive gate using four-wave mixing in photorefrac-
tive material (P.R). Beam splitters (B.S) are needed for output

coupling.
A
o
\ ¢ ——
Py >
8 P2
INLL A—
a5
A A c'

N.L
Fig.6. Waveguide coupler gate. The coupling region activated by
line C is a photorefractive or other nonlinear material or electrooptic
material: (a) out-of-plane control; (b) in-plane control.

use of photorefractive material for direct optical con-
trol of the coupling constant. The example in Fig. 6(b)
is a waveguide coupler incorporating highly anisotro-
pic guides containing nonlinear material. The two
coupling waves (A and B) are ‘ntroduced with the same
polarization so that they can couple while the control
signal C is orthogonally polarized so that its power is
used to activate the coupling between the A and B
channels, but it does not couple itself into the other
guide.®

V. Proposed Devices incorporating Fredkin Gates

We demonstrate the applicability of these new gates
by proposing, in addition to the conventional logic
gates, two very useful devices that incorporate arrays
of the waveguide gates shown in Fig. 6.

A. Optical Crossbar

The gate array of Fig. 7 may be constructed of gates
of the type depicted in Fig. 6(a) or the type in Fig. 6(b).
In the first case each gate may be accessed randomly
from above by an electric field or by light, depending
on the specific device used. As we are dealing witl
optical computing we might prefer activation by light
such as a holographic coupler® or fiber coupler. Witk
proper addressing each input line can be coupled tc
each output line. This system may prove to be ar
extremely fast and efficient crossbar or optical switch
board. The in-plane addressing of Fig. 6(b) is applica
ble if one desires to activate a whole column together
At first sight it appears that this kind of addressing i:
not suitable for random access; however, with very fas-
pulses this also becomes feasible.

B. Tapped Delay Line

The basic configuration of Fig. 8(a) is a tapped dela:
line. A fiber ring may be utilized for long delays, while
for very short delays one may use waveguide rings, the
feasibility of which has also been demonstrated.’!
Here too the addressing may be of the first type [Fig
6(a)] or of the second type [Fig. 6(b}]. Such a setu;
may be used to delay all the energy in a pulse or jus
part of it to produce a pulse train from a single initia
pulse. A slight modification of the system as illustrat
ed in Fig. 8(b) may be used to reverse the direction o
signal flow resulting in a true reversible Fredkin gate
In the future, an optical memory block may resembl
the array depicted in Fig. 8(c). This seems to be .
short-term memory, but with the integration of ampli
fying medium it may serve also as a long-term memory

V. Discussion

Initial approaches to optical computing have tendec
to duplicate the evolution of combinatorial logic im
plemented in semiconductor microelectronics
Present configurations of semiconductor logic gate
are well suited for electronic computing but may not b«
the best choice for optically implemented logic. It

Fig. 7. Integrated optical crossbar. The elliptic regions are the nonlinear coupling switches.
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Fig. 8. Tapped delay line:
(a) basic configuration;
(b) reversing modification;
(c) memory array.

this work we have resurrected the concept of reversible
logic, illustrated various optical implementations of
Fredkin gates, and suggested gate configurations capa-
ble of combinatorial logic. These configurations com-
bine the communications advantage of optics with
noncapacitive multiline addressing of individual gates
and suggest their evaluation as a basic building block
for optical computers. The various implementations
illustrated here are intended to illustrate the potential
of this approach; future work will elaborate on specific
higher-order logical functions.

Joseph Shamir is on leave from the Department of
Electrical Engineering, Technion—Israel Institute of
Technology.
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Abstract

Much work is being done toward the optical implementation of traditional electronic processing and
computing methods. Many of the proposed methods may not be the optimal way to utilize the benefits of opti-
cal techniques. We introduce here a new optical gate - the Fredkin gate - that is in principle minimally
dissipative and its response time in some implementations may be limited only by the duration of optical
pulses (i.e. in the subpicosecond range). To indicate the viability of this novel approach, a number of
optical implementations of Fredkin gates with some interesting applications are proposed.

Introduction

One of the limitations imposed on increasing computation power, be it electronic or optic, stems from
the large amount of energy that needs to be dissipated during computer operation‘. Part of this energy is
due to the intrinsic nature of the traditional logic elements. This fact becomes evident if we recall that
a conventional logic gate has more input lines than output lines. Thus some of the information coming into
the gate is lost and cannot be retrieved. The irreversible nature of the gate makes it dissipative not only
in information but also in energy. In an effort to overcome these limitations, Fredkin proposed a new kind
of logic gate which has the same number of output lines as it has input lines. Fredkin gates are capable
of performing conventional logic operations while preserving all the original information. In contrast to
the conventional logic gates the Fredkin gates may, in principle, be run backwards to regenerate the crini-
nal input signais.

The purpose of this work is to introduce the optical Fredkin gate which may become one of the basic
building blocks of an optical computer. An overview of the main aspects of the Fredkin gate is given in
the next section, followed by a variety of proposed optical implementations. A number of use applications
are discussed in a final section.

Background on the Fredkin Gate

The basic Fredkin gate is defined as a black box having three binary inputs and three binary outputs
(Figure 1). The C-input - the control line, determines the operation of the gate on the other two inputs
according the following rules:

IF C=0: A' = A;

B' =B (1)
IF C=1: A" =B; B' =A;

c —* - c
A e r——— > Al
B — ey —- B!

Figure 1.

It is quite evident that this gate is reversible, i.e. it ma
.e, y be run backward to return to the original
inputs and therefore it is in principle non-dissipati;e. (The original definitions used in Ref. 2 are ghe

lqzzrie of Eq. (1); however we find this definition more intuitive and more suitable for optical implementa-
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Ustng the three inputs and the three outputs of the Fredkin gate one may implement the traditiona)
logic gates that usually have two input lines and one output line. To make the comparison easier, in the
examples of Fig. 2 we leave the lines corresponding to the conventional gates straight while the other lines
are shown bent. In Figure 2a an AND gate is impiemented keeping the A input at the O level obtaining the
required output on the A; line. Unlike conventional gates, we obtain two additional outputs that we may

0
a
-— a.b (a)
b et ————
a.b a
0
b ———i - a+b (h)
a+b a
Figure 2.

utilize or ignore., In a similar way, one possible implementation of an OR gate is shown in Figure 2b. It
can be easily shown that any other function, such as NOT, FAN-QUT, FAN-IN and FLIP-FLOPs are also easily
implemented. In the next section we discuss a number of ways to implement the Fredkin gate by optical and
electro-optical mecans.

Optical Implementations of the Fredkin Gate
For applications in logic networks one is usually interested in logic gates containing nonlinear,
bistable elements. The basic configuration of a Fredkin gate, however, is not restricted to digital signals
and, in principle, one .ay use these gates for processing analog signals as well. In the examplcs that
follow the nature of the control signal will determine the actual response of the gate.

A polarization switching gate is shown in Figure 3. The A and B lines correspond to two orthogonal
polarizations of a lioht beam {or a waveguide channel of an integrite’ optical system) traversing

. B.S.

c ¢
1
b o—
I Y
A B BI Al
E.O.
Figure 3.

an electro-optic modulator that rotates both polarizations by 90° when activated. The activation is induced
by a direct electronic pulse or, as shown in the figure, by an optical signal transduced to an electrical
signal using a photodetector (Photoconductor or photodiode-amplifier combination). Polarizing beam-splitters

SPIE Vol. 625 Opticel Comounting (1986) /
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may be appiied whenever a spatial separation is required between the A and B lines. The main advantage of
this gate is its relative simplicity while its disadvantage is the different nature of the C-line that
also changes level during transition through a cate (i.e. there is a lower light intensity in C' than in C,
This effect may, however, be corrected by incorporating an amplifyinq medium on the line).

In Figure 4 we show a schematic diagram of the acousto-optic gate: The two input lines are laser beams
incident on an acousto-optic deflector (either bulk or integrate gIWT at the Bragg angle. If there is no
acoustic signal (C = (), the two beams continue unaffected (A' and B') while if C is present each beam is
deflected into the other channel. This is also a simple gate but, here too, one has a C line which is basically
basically different in nature than the other two lines. Nevertheless this kind of gate can be easily cas-

caded and intecrated. For example, a single acoustic pulse may activate many gates as it travels alono the
system.

cl

Figure 4.

The ®hotorefraciive gate, based on four-wave~m1‘x1’ng3 is an all optical nate with one of its tentative
implement:tions illustrated in Figure 5. In this case the C-line constitutes the two pump beams. The
inputs A and are transmitted if C is absent and phase-conjugated when the nump is present resulting in a

switching between tie outputs.

Ficure 5.

In optical cormunication and integrated optical systems a modulated waveguide or fiber coupler may serve
as a Fredkin gate. Two general classes of this kind of gates may be implemented. The out-of-plane control,
shown schematically in Figure 6a, and the inplane control with one possibility desigted in Figure. Gb. A
number of workers have already implemented the electronically addressed coupler “»2 that may serve as a Fred-
kin gate with an electronic C-input. To symmetrize the System one may use photodetection combined with
the electro-optic counler to facilitate optical control. A more advanced technology would be the use of
photorefractive material for direct optical control of the coupling constant. The example in (b) is a wave-
quide coupler incornorating highly anisotropic guides containing nonlinear material. The two coupling waves
{A and B) are introduced with the same polarization so that they can counle while the control signal, C, is
orthogonally polarized in such a way that its power is used _to activate the coupling between the A and B
channels but it does not couple itself into the other guide®.

4 /SPIE Vol 625 Optical Compuung (1986)




Proposed Devices Incorporating Fredkin Mates

Wwe demonstrate the applicability of these new gates by proposing, in addition to the conventional loaic
gates, two very useful devices that incorporate arrays of the wavequide oates shown in Figure §.

A Al
c = —
(a)
8
P.R,
(N.LO B
Figure 6
¢ A A' C'

..........

Figure 6.

The optical crossbar. The gate array of Figure 7 may be constructed of gates of the type depicted in
Figure ba or the type of Ab. In the first case each gate may be accessed randomly from above by an electric
field or by light, depending on the specific device used8 As we are dealing with optical computing we might
prefer activation by light such as a holographic coupler® or fiber coupler. With proper addressing each
input line. This system may prove to be an extremely fast and efficient crossbar or optical switchboard.
The in-place addressing of Figure 6b is applicable if one desires to activate a whole column together. At
first sight it appears that this kind of addressing is not suitable for random access; however with very
fast pulses this also becomes feasibie.

In Out

Figure 7.

The tagged delay line. The basic configuration of Figure 8a is a tapped delay line. A fiber ring
may be ut € T tong delays while for very short delays one may use waveguide rings the feasibility of
which has also been demonstratedd.10, Here too, the addressing may be of the first type (Figure 6a or of

the second (Figure 6b). Such a ser may be used to delay all the energy in a pulse or just part of it to
produce a pulse train from a singl. itfal pulse. A slight modification of the system as illustrated in
Figure 8b may be used to reverse the direction of signal flow resulting in a true reversible Fredkin gate.

In the future, an optical memory block may resemble the array depicted in Figure 8c. This seems to be a short
term memory, but with the integration of amplifying medium it may serve also as a long-term memory.

SPIE Vol. 625 Optical Computing (1986) /&




Figure 8(a)

Figure 8 (b)

Figure 8(c)

Discussion

Conventional approaches to optical computing followed the lines nut forward by workers with electronic
systems. Traditional logic gates are well suited for electronic computing but may not be the best choice
for optical Processors. In this work we indicated that one should also consider different imnlementations
for optical computing systems with one very promising possibility being the Fredkin gate. These aates have
many simple optical implementations and may prove to be very fast and energy efficient. The various imple-
mentations and apnlications given here are just samples to indicate the diverse possibilities available.
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High-efficiency rapidly programmable optical

interconnections

Joseph Shamir and H. John Caulfield

An array of optical Fredkin gates implemented by optically controlled waveguide couplers is showr
constitute a very efficient and versatile optical interconnection network with parallel addressing capabili
The characteristics of the array are analyzed using linear algebra to indicate interconnect programrr
procedures. In terms of SNR this network is estimated to be comparable with previously proposed archi
tures. However, from many other aspects (light transmission efficiency, number of switching eleme
speed, and fault tolerance) it has significant advantages.

I. introduction

Optical interconnects were initially investigated for
application in integrated electronic processors.!> The
demand for highly efficient and fast optical intercon-
nects or programmable crossbars is now increasing
with the extensive progress made in the applications of
optical fiber communication networks and the expect-
ed developments in optical computing. In a recent
work® the benefits of the optical Fredkin gate were
discussed, and several optical implementations were
proposed. It was also pointed out there that an array
of these gates may function as an optically or electroni-
cally addressed optical interconnection network. The
array of switching elements building up this network
may be addressed in parallel leading to a very fast,
light-efficient, and fully programmable device. In
principle, the operating speed of the network will be
limited by the addressing time, and that may be very
short if a page-oriented holographic memory’? is em-
ployed. Insuch a memory bank each useful switching
pattern is stored as a hologram that may be addressed
by a deflected laser beam.%!° Nanosecond addressing
time may be possible with an array of 1024 X 1024
holograms.

In the present work we analyze the operation of a
general Fredkin gate array interconnection network.
Although any optical implementation of the Fredkin
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gate may be assembied as a useful array, reference h
will be made to the most promising one, the optics
addressed waveguide coupler array.

Most of the presently demonstrated switcha
waveguide couplers employ the electrooptic effect
voltage control,!!-14 but direct light-addressa
switches are already emerging.>1¢ For our purp
we are interested in direct light activated couplt
However, a photodetector array connected to an el
trooptic switching array will be also quite efficient w
its speed limited only by detector delays.!’

In the next section we describe the architecture
the Fredkin gate network with a physical approach
the addressing algorithm. The ideal gate array is
scribed in Sec. I1I by a linear algebraic approach ¢
ploying a unitary matrix group. The physical limi
tions of a real system is discussed in Sec. IV taking i
account losses and crosstalk to evaluate an expec
SNR for an actual device. The implementation
optical crossbars is addressed in Sec. V with a gene
discussion following in Sec. VI.

0. Fredkin Gate interconnection Network

The basic Fredkin gate is defined as a black |
having three binary inputs and three binary outp
(Fig. 1). The C-input, control line, determines ope
tion of the gate on the other two inputs according to
following rules:

C=C,
ifC=0: A'=A; B =B
ifCm1: A'=B;, B =A

It is evident that this gate is reversible; i.e., it may
run backward to return to the original inputs, a
therefore, it can be nondissipative, at least in princi
Of the various optical implementations proposed
Ref. 6 we are interested here in the waveguide cous




Fig. 1. Fredkin gate.

. Waveguide coupler implementation of the Fredkin gate. [
‘he interaction region where coupling is switched ON or OFF.

AYER NO.

1 2 3 [
] [

3 ! !

‘ .

Fig. 3. Four-channel array with four switching layers.

shown in Fig. 2, although any other optical Fredkin
gate is applicable. The two inputs, A and B, are
switched when the interaction region I is activated by
the control signal C. The most efficient construction
would involve a photorefractive interaction region di-
rectly activated by light. However, the electrooptic
effect may also be used employing an amplified signal
from a photodetector receiving the C-input.

The waveguide coupler Fredkin gate of Fig. 2 is our
basic building block for constructing a general inter-
connection network. Figure 3 represents the 4-input
and 4-output network. Proceeding from left to right
we encounter four layers of interaction regions (num-
bered 1-4) with each such region activated by an inci-
dent control signal. Checking all possible switching
combinations one can show that with this arrangement
any input signal a; (i = 1,2,3,4) may be coupled into any
output port b;. Inother words, all twenty-four permu-
tations are possible with four layers of switches, six
switches all together. It is interesting to note that
there are forty possible switching states. Thus some
of them are redundant with respect to the output con-
figuration. As will be indicated, this redundancy is
very useful for fault tolerant operation.

Using induction one may generalize the configura-
tion assuming that for n = 2N channels one needs n
interaction layers. If we add two more input channels,
an+1 and an+9, as in Fig. 4, we need two more couplers
(the dotted ones in the figure) to switch either of the
two new signals into the old array. To make all permu-
tations possible the additional layers should be filled
out completely as will be indicated in the mathemati-
cal description of the next section. We see that our
n X n network needs n layers with alternating n/2 and
n/2 — 1switches each. Thus the complete array needs
n(n ~ 1)/2 switches to establish all possible intercon-
nections, that is, less than half of the n? elements
required by most conventional networks.

This whole switching array may be considered as a
generalized n-dimensional Fredkin gate: If all control
inputs are in the O state (all switching elements are

Fig. 4. n-channel array with the
addition of two more.

15 March 1987 / Vol. 26, No. 6§ / APPLIED OPTICS 1033




OFF) we obtain b; = g; for all i, while a complete inver-
sion, i.e., b, = a;, b,—) = a,, etc., is obtained with all
control signals in the 1 state (all switches are ON).

M. Mathematical Analysis

For a mathematical analysis we return to our basic
element, the waveguide coupler Fredkin gate of Fig. 2,
and represent the input and output channels by vec-
tors & and b, respectively. The transformation of the
vector a into the vector b may be implemented by a 2 X
2 unitary matrix F(C), where the parameter C may
assume the two control values 0 and 1:

1 0 01
F(Q) = [0 1] F(1) = [l 0] . (2)

The two possible transformations attainable with this
device may thus be written in the matrix form:

b = F(C)a. )

This matrix formalism is easily extendable to a general
n-channel device: We observe that each interaction
region in a gate layer (see Fig. 3) involves only switch-
ing between adjacent channels. Thus, if we describe
the input to this layer by the n-element vector a, it will
be transformed by a block-diagonal unitary matrix

i'l-‘"soo... . 1000 ... =
L_J0o ... o:'poo...
0O0F 00 ... 0 00 ...
00 00 ... oooi"ioo...
P= ; Q= . .
4o
=ed 0 v
L 0 0iF ) L (;E—J?J
0o0i__Jl

(4)

where P corresponds to an odd numbered layer, while
Qis a matrix corresponding to an even numbered layer.
Thus one may describe the complete system transfor-
mation by a product of these matrices. The first ma-
trix to operate on the input vector will be P,, the
second matrix will be Q;, and the final one will be Q,
and we may write down the complete transformation
to be the relation

b=Ta, (5)
where the transfer matrix is

! \»=at

AR

A
v - oy
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T= ann—IQn-2- . 'szl'

where the subscripts denote layer numbers.
Equation (6) is a simple mathematical relation th
describes any possible switching state of the comple
system. To solve the inverse problem, i.e., determi
the switching state for a given interconnection, ti
requirement is not much more complicated. Sincet]
n X n matrix T must have a single element with value
in each row and each column with the rest of t|
elements having the value 0, it is a simple matter
write down this matrix for any interconnection r
quired. The next step is a decomposition of this m
trix into n matrices P and Q. This can be done easil
since these matrices are the inverse of themselve
Thus one can take the T matrix and start multiplyir
it by the P and Q matrices until it reduces to the un
matrix. If we multiply Eq. (6) from the left by Q, th
matrix is eliminated from the right-hand side of ti
equation. The procedure may now go on with t}
matrix P,-,; etc. until the unit matrix is obtained:

P.Q,. . -P.QT=1 6

where I is the unit matrix. Physically, the two equ:
tions (6) demonstrate the reciprocity property of
nondissipative optical system.

We clarify the procedure using the six-channel arre
illustrated in Fig. 5 with an arbitrarily chosen intercor
nection pattern indicated on the right-hand side. T
write down the transfer matrix we observe that az mw
be transferred to the first channel. Thus the first ro
should have its unit element in the third place. Sim
larily, the second row will have its unit element in tt

second column and so on until we construct the whoi
matrix:

o - 0O O O
OO OO —O
[~ BN~ -
-0 O O O
L= = R = 2N =1
(= B B = I e ]

0 0 1 0

Our objective now is to find consecutive P and Q matr:
ces that will translate all the unit elements into th
matrix diagonal. To be most efficient in this proce
dure we observe that the units in rows 3and 4 are at th
largest distance from the diagonal, and they can bot.

b, = a
bz"z
b3-a
~C Bam

bs-a

Fig. 5. Six-channel array with
selected interconnections.

bG-a

w




» brought closer by interchanging them. This goal
ay be attained by the P matrix (a Q matrix will do no
wod at this stage):

Py=

© O O~ O
C OO0 O0OO0 -~
(=~ — I =
OO O =00
-~ 0O 00O
-0 0 0 OO0

0

here we also switched between the first two channels
nce the unit of the first row is also far from the
agonal. Proceeding in this manner, we have

1 0 00 00 0100 00
001000 1 00 0°0 0
010000 001000

‘- Ps-
000010 00 01 00O
00 0100 00 00 01
00 0 01 00 010

hese three matrices complete the task. Thus, for this

1se, only three layers are required to perform the
seration. This again can be deduced by observing
1at the transfer matrix has its unit elements at a
istance from the diagonal not exceeding three posi-
ons. The hatched interaction layers in Fig. 5 desig-
ate the ON elements. This specific example demon-
irated also the property of redundancy that may lead
)d fat:l; tolerance when production limitations are con-

ered.

All the matrices involved until now are unitary ma-
‘ices as we are dealing with ideal nondissipative sys-
sms. In the next section we modify the formalism to
iclude losses and leaky switching elements as encoun-
sred in practice.

/. Real Networks

A real physical network cannot be described by the
bove unitary matrices. To take into account losses
nd crosstalk in the nonideal switching elements, the
asic switching matrix of Eq. (2) should be modified.
he two states of a real Fredkin gate may thus be
epresented by the two modified matrices:

- l-a 8 -l 1-3
F(0) [ﬂ l-a] F(1) [1-6 7]. (8)

there a is the loss from the unswitched channel in-
luding actual loss and leakage 8 into the second chan-
wel, and é is the uncoupled fraction into the switched
hannel with v the fraction of the signal that leaks
hrough undeflected. For simplicity a complete sym-
aetry is assumed between the two coupled channels.
‘or a working system one naturally must require that
4 8,7, 6, < 1. Integrating this gate into an intercon-
iection array returns us to the block-diagonal matrices
f Eq. (4), but now they are not unitary as they include
he lossy matrices [Eq. (8)] instead of the ideal ones of
iq. (2).

To investigate the effects of the deteriorating pa-
-ameters we return to the four-channel system of Fig. 4
ind construct the transformation matrix for one of the

most difficult transformations, i.e., a complete inver-
sion with input vector,

a2t =(1,1,10.

For this transformation all switching elements are in
the ON state. Thus we have to substitute F(1) for all
the diagonal blocks in four matrices of the form of Eq.
(4). Performing the matrix multiplications and oper-
ating on the above input vector yield the output vector

v+ U= +v1 =82y + (1 =82+ (1 =81 + 2v)]
YHY1=01+Y)2=-+2% -+ 5
YVHY1 =022+ + (1 =-8[2v°+(1-87
A= +v(1 =82y + D+ y(1 = (1 =62 + y2 + 7]
(9)

The ideal transformation would give b, = 0 with the
other three elements 1. Thus we may define a SNR by
the relation b./b, giving
U=+ (1= P2y + D+ (1= )1 =82+ +]
vy + (1= 8T+ v(1 = 82y + (1 = 52 + (1 = SK1 + 2v)]
(10)

b=

Retaining only first-order terms we obtain

SNR=-——2.

3y (11)
This result could be anticipated since there are three
switching elements where a fraction of the unit signal
could leak into the zero channel, while the losses from
the unit carrying channels are compensated to first
order by leakage from the other large-signal channels.
Again, by induction, one may generalize this first-
order approximation to n channels leading to an ex-
pected SNR for a physical network given by
1-4

SNR=

(12)

Interpreting some experimental results!>-!¢ one may
assume the attainable values, 1 — 6 = 0.95 and vy =
0.001 yielding an SNR (>2) up to 500 channels.

V. Optical Fredkin Gate Crossbar

‘The major function performed by the optical net-
works described in this work is that of a cross-connec-
tor, i.e., the capability to connect any input channel to
any output channel. In previously proposed optical
crossbars the light input to each channel is spread over
all the output channels, and the required connections
are obtained by blocking the unwanted connections.
From the point of view of the optical design engineer
these are blocking crosshars that, for an n-channel
system, are only 1/n as light efficient as our nonblock-
ing network, where, in an ideal device, all the incident
light is utilized for signal transmission. Also, as point-
ed out earlier, n(n — 1)/2 switching elements are ade-
quate to perform all interconnections as opposed to n?
elements in the previous optical crossbars. However,
our interconnection network is not completely equiva-
lent to a crossbar.

From the point of view of the network engineer!s
those previously proposed crossbars are nonblocking
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Fig. 6. Nonblocking optical crossbar containing two parallel net-
works.

in the strict sense in that any idle pair of terminals may
be connected without disturbing already established
connections. In this sense our interconnector is not a
crosshar because one may have to reprogram the whole
array to change even a single connection. There is at
least one possible solution for the problem that em-
ploys two identical networks as shown in Fig.6. Then
controlled directional couplers on the left-hand side
are used to switch the whole input pattern between the
two networks. If, for example, a new connection is
required while information flow is in progress through
network I, network II may be programmed to support
the complete new connection pattern, and then the
inputs may be switched over to network II. Inthe next
occasion the inputs will be switched back to network I.
This will be a nonblocking crossbar from the point of
view of the optical design engineer as well as from the
point of view of the network engineer. Switching be-
tween the two networks will not disturb information
flow, since during the short transition time both net-
works will transmit the signals (in complementary
amounts of power) that will be combined by the con-

stant directional couplers of the proper output chan-

nels on the right-hand-side of the system. It is inter-

esting to point out that the achievement of a strictly

nonblocking system was at the expense of additional
switching elements returning to the tota!l of n2.

VI. Discussion

The optical Fredkin gate was shown to be an excel-
lent Building block for construction of a programma-
ble optical interconnection array. Such an array can
perform all interconnection requirements, such as the
function of a crossbar or perfect shuffle. The overall
performance should be significantly better than any
other approach proposed until now. Using page ori-
ented holographic memories this will be the fastest
programmable interconnection network constructed,
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and, in most cases, it needs only half of the activ
elements of any other configuration.

Being nonblocking with respect to light manipula
tion results in additional benefits: All the light energ,
coupled into the system is being extracted as signal
except for the inevitable losses encountered in an
physical system. Furthermore, if a defective switcl
exists in the array, the signal will in most cases b
transmitted without deflection. This characteristic
together with the implicit redundancy in the systerr
may be utilized for fault tolerant operation. For ex
ample, assume that there is an anticipated fractione ¢
faulty switching elements introduced during the man
ufacturing process of an n-channel array. To avois
the faulty elements it is a simple matter to make a:
array that has n(1 + ¢) channels (and switching layers
and then ignore the faulty layers during programming
The introduction of additional channels can also sup
port the solution of problems such as FAN.-OUT am
FAN-IN.1?

Considering the problem of signal deterioration i
was shown that the Fredkin gate network should per
form comparable with an optically blocking networ.
that has a constant SNR similar to the worst case SNI
in the present system.

In conclusion, one may state that the optical Fredki:
gate array may turn out to become the best solution fo
the implementation of optical interconnections. Re
calling the fact that these gates can also perform logi
operations® they should be seriously considered as th
basic building blocks for a future digital optical com
puter.

This work was partially supported by the Office o
Naval Research under contract NOOOO14-86-K
0591.

Joseph Shamir is on leave from the Department ¢
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tute of Technology.
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Three-dimensional optical interconnection gate array

Joseph Shamir

A recently proposed planar Fredkin gate array for optical interconnections is extended here into a 3-D array
that can be implemented using ferroelectric liquid crystal spatial light modulators. Operating as polarization
gates these modulators are efficient and can be incorporated into high performance interconnection networks.
Some advantages of the new architecture are discussed and performance characteristics are estimated.

. introduction

One of the most promising uses of optics in comput-
ing and communications is the implementation of
complicated interconnections. For this application,
planar architectures of Fredkin gate arrays construct-
ed of optical waveguide couplers were recently investi-
gated.! This work demonstrated that these arrays are
efficient with respect to the utilization of light power
and they are rapidly programmable. In addition to
their use in optical interconnection networks these
arrays can also be employed in various processing op-
erations such as residue arithmetics,? logic gate arrays,
and variable delay lines. The planar configuration is
attractive for applications in conjunction with inte-
grated optical and electronic devices; however the ad-
vantages of the 2-D parallelism possible with optical
systems were not fully exploited. In the present work
we explore the performance of 3-D architectures and
indicate their implementation using polarization
Fredkin gate arrays.

Il. Planar interconnection Network

We start with a short review of the planar intercon-
nection array of n channels that was investigated in
Ref. 1. One possible implementation of such an array
employs controllable waveguide couplers as represent-
ed schematically in Fig. 1 for a seven-channel wave-
guide array. In this array there are seven channels

When this work was done the author was with University of
Alabama in Huntsville, Center for Applied Optics, Huntsville, Ala-
hama 35899: he has now returned to Technion—Israel [nstitute of
Technology, Department of Electrical Engineering, Haifa 32000,
[srael.
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with respective input signals, a; (i = 1,...7), seven
outputs, b;, and seven layers of couplers (switches) that
are either OFF or ON. When a switchis in the OFF state
the signal in each channel is transmitted through the
coupling region and remains in its original channel.
With the switch in the ON state the signals are inter-
changed between adjacent channels. It was shown in
Ref. 1 that, for such a configuration containing r chan-
nels (i = 1,...n), one may obtain b; with all the possible
permutations of a; using n switching layers with a total
number of n(n — 1)/2switches. Inapractical situation
where the switching élements are not ideal one may
assign some average parameter, v, for the fraction of
the signal that leaks through the coupler into the un-
wanted channel and obtain an approximate value: for
the signal-to-noise ratio (SNR) at the output:

1-+

SNR = .
(n—=1)y

(n

. Three-Dimensional Arrays

To improve the performance of the system by ex-
ploiting the 2-D capabilities of an optical system one
may stack m-planar arrays (such as in Fig. 1), each of n
channels, into a 3-D architecture [Fig. 2(a)]. The
switching layers are now arranged as matrices over
transversal planes but each planar array is indepen-
dent of the others. Extending the earlier analysis, it is
easy to see that for the stack of n-channel arrays one
needs n-switching layers to perform all possible hori-
zontal interconnections. To make all vertical connec-
tions available too, we augment the configuration by n
vertically oriented planar arrays [Fig. 2(b)] of m chan-
nels each, containing m-switching layers. Thusacom-
plete interconnection array [a cascade of Figs. 2(a) and
(b)] can be implemented using m layers of n(n — 1)/2
switching elements and n layers with m(m — 1)/2
switching elements summing up to a total of

N=mn(n=1}/2 + nmim = 1)1/2=mnin+m ~2)/2 (2)

switching elements. With a square array of n? chan-
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Fig. 1. Seven-channel planar interconnection array.

(nput Plane cvitehilng layer

(a)

[

Fig. 2. (a) Stack of m planar arrays of n horizontal channels each.
{b) Stack of n planar arrays of m vertical channels each.

nels (m = n) one needs n%(n ~ 1) switching elements
compared with nt of a regular planar crossbar. It
should be pointed out, however, that FAN-IN and FAN-
OUT operations with this simple configuration are pos-
sible only at the expense of additional channels as
indicated in Ref. 2.

Regarding the SNR, one may repeat the calcula-
tions! that lead to Eq. (1) or just observe that, to first
order, it is inversely proportional to the number of
switching ayers. Thus in our case we may write, in-
stead of Eq. (1),

1=~

SNR = m ' (3)
which is an appreciable improvement compared with
the planar array where for M (=n X m in the present
case) channels the sum in the denominator would have
to be replaced by the product (n X m). Waveguide
arrays as described in Ref. 1 are ideal for planar net-
works; however, for this 3-D architecture different
kinds of device may prove more useful.

V. Polarization Gate Arrays

In Refs. 3 and 4 polarization logic gates were pro-
posed while, independently, in Ref. 5, a similar model
was proposed for the implementation of optical Fred-
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Fig. 3. Section of the ferroelectric interconnecting
ferroelectric gate array; W, Wollaston prisms.
various channels is indicated.

array - gy,
Polanzalmn o ke

kin gates. In these gates the switching operation r
tates the polarization of an incident beam by 900 (l)f
employed as a logic gate one polarization is de'ﬁned‘as a
logic 1 while the orthogonal polarization is defined a¢ a
logic 0. In this work we use the Fredkin gate defini.
tion: the two orthogonal polarizations represent the
two separate input channels to the gate while pe
switching operation interchanges the two channels,
In each of these channels the presence or absence of 5
signal indicates the logic 1 and 0, respectively.

Polarization Fredkin gates may be implemented by
various electrooptic or magnetooptic modulators. For
the present purpose, the most promising device is the
ferroelectric liquid crystal spatial light modulator
(FLC) that already exists in the form of large arravs,
Each pixel of the FLC can be addressed separately 1o
switch ON - OFF a halfwave retardation, thus per.
forming the requirement of a polarization Fredkin
gate.

The top view of a section of the proposed polariza-
tion interconnection array is shown schematically in
Fig. 3. A suitably designed Wollaston prism is em-
ployed to combine two channels into a single gate
element (pixel). After transmission through thegatea
second, similar Wollaston prism separates the two po-
larizations (channels) and directs them toward two
adjacent gates in the next stage that is shifted trans-
versally by half of the distance between pixels. The
layout of each horizontal plane resembles the planar
waveguide array of Fig. 1, and each FLC sandwiched
between two Wollaston prisms performs the function
of a 2-D coupling array as required in Fig. 2(a). Using
FLCs in arrays of n X m we may implement the com-
plete interconnection network with 2n stages (each
pixel in the FLC represents two signal channels) per-
forming the horizontal interconnection between the 2n
channels similar to Fig. 2(a). To implement the verti-
cal interconnections required in the architecture of
Fig. 2(b) one needs 2m additional stages with the Wol-
laston prisms rotated by 90°.

To estimate the SNR of an interconnection network
one may use the reported switching contrast ratio of
~100:1. Deducing from this a signal leakage value of
~0.01 we obtain for a square array of n X n gates {4n X
n channels) by Eq. (3),

0.99

- . 14}
001 X (4n = 1)

SNR =




;g .

B4

- e O (U = w W .

Thus the SNR with presently available gate arrays will
be better than 2 up to n = 12, i.e.,, a total of ~500
channels that can be switched at a rate approaching 1
MHz. Research on this kind of spatial light modulator
indicates that the above numbers may be appreciably
improved in the future.

V. Conclusions

Exploiting the 2-D addressing capabilities in optical
systems, it was shown that efficient programmable
interconnection networks can be implemented ina 3-D
architecture. Even using existing liquid crystal spa-
tial light modulators that were not designed for the
present purpose, high density and low-loss networks
are possible. In addition to their application in inter-
connection networks these arrays may become useful
in other fields, such as optical logic gate arrays, arith-
metic processors, programmable delay lines, phased
arrays, and wideband signal analyzers.

It is a pleasure to thank K. M. Johnson for stimulat-
ing discussions about the ferroelectric liquid crystal
gate arrays.
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Residue arithmetic processing utilizing optical

Fredkin gate arrays

Mir M. Mirsalehi, Joseph Shamir, and H. John Caulfield

A cascadable residue arithmetic processor based on optical Fredkin gate arrays and page-oriented holograph-
ic memories is introduced. The implementations of residue functions and operations by this processor are
described. Analytic expressions are derived for the number of holograms and waveguide channels required
for the implementation of residue addition and multiplication. The practical cases of 16-bit addition and
muitiplication are analyzed as specific examples. [t is shown that, using the proposed architecture, these
operations can be implemented with state-of-the-art technologies in holography and integrated optics.

1. Introduction

There is a growing interest in the field of digital
optical computing.! To obtain digital optical proces-
sors that greatly surpass the performance of the
present computers, the inherent advantages of optics
should be utilized. Two major advantages of optics
are interconnection and parallelism. Global intercon-
nections can be achieved by classical optical devices,
such as prisms and lenses,? or by holograms.34 Also, it
has been recently shown that an array of optical Fred-
kin gates constitutes a very efficient and versatile in-
terconnection network.>6 Parallel processing can be
achieved easily in optics by manipulating the elements
of a 2-D array. To take full advantage of the parallel-
ism in optics, digital techniques that are suitable for
parallel processing can be utilized. One of these tech-
niques is residue arithmetic, which is based on the
residue number system (RNS). The main advantage
of the RNS is that its digits are independent of each
other; e.g., there i= no carry in addition. This allows
simultaneous operation on all digits.

The purpose of this paper is to show how an array of
optical Fredkin gates can be used to realize residue
arithmetic. To provide the required background, resi-
due arithmetic and Fredkin gates are briefly described
in Sec. II. The general realization of residue arithme-
tic with optical Fredkin gates is introduced in Sec. III,
while the implementation of residue addition, multi-
plication, and other operations are described in Secs.
IV, V, and VI. Finally, in Sec. VII, the potential
characteristics of this processor are summarized.
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ll. Background on Residue Arithmetic and Fredkin
Gates

A. Residue Arithmetic

The foundation of residue arithmetic dates back to
the first century A.D., when the Chinese mathemati-
cian Sun-Tsu published a verse in which he gave an
algorithm for finding a number whose remainders on
division by 3, 5, and 7 are known. A general theory of
remainders (now known as the Chinese remainder
theorem) was established by the German mathemati-
cian K. E. Gauss in the nineteenth century. The ap-
plication of residue arithmetic in computers, however,
is relatively recent and was first introduced in 1955 by
Svoboda and Valach in Czechoslovakia.”

Unlike the commonly used binary and decimal num-
ber systems, the residue number system (RNS) is an
unweighted system. The base of a residue system
consists of n pairwise relatively prime (having no com-
mon factor) numbers, m;, ms, ..., m,, called moduli.
Any integer X can then be represented by an n-tuple
(21,2, . . . ,xn), where x; = | X|,,, (read X mod m,) is the
positive remainder that is obtained from the division
of X by m;. This representation is unique for a dy-
namic range of

-]

An important feature of the RNS is that the fixed-
point arithmetic operations can be performed on each
digit individually. Thatis,if X = (x{,x,,... x,)and Y
= (y1,¥2, . - . ,¥n) 8re two numbers of the same residue
system, Z = X « Y = (2,,25,...,2,), where 2, =
[(x;» y.')l,..,. fori=1,2,...,n,and » represents addition,
subtraction, or multiplication. Division can be per-
form:d, but it is difficult except for the remainder zero
case.

As an example, consider the set of four moduli !5, 7,
8,9}. These moduli cover a dynamic range of 2520. In
this residue system, the decimal numbers X = 42and Y
= 31 are represented as X = (2,0,2,6) and Y = (1,3,7,4).




-
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The results of performing addition, subtraction, and’
multiplication on these numbers are X + Y = (3,3,1,1),
X -Y=(1,4,32) and X .Y = (2,0,6,6), which are the
residue representations of the correct answers, i.e., 73,
11, and 1302, respectively.

B. Fredkin Gates

The basic Fredkin gate has three binary inputs and
three binary outputs (Fig. 1). The control input C
determines the operation of the gate according to the
following rules:

C'=C,
A'=AandB'=B, ifC=0, (1)
A’=BandB'= 4, ifC=1

The Fredkin gate is a functionally complete set in
Boolean algebra. That is, any binary logic operation,
such as AND, OR, and NOT, can be realized by Fredkin
gates. The application of optical Fredkin gates as
interconnecting systems is of special interest. It has
been shown recently that an array of optical Fredkin
gates can operate as a very efficient interconnection
network with parallel addressing capabilities.

Optical Fredkin gates can be implemented by vari-
ous techniques.> Here we are interested in the imple-
mentation by the waveguide couplers shown in Fig. 2.
The two inputs, A and B, are switched when the inter-
action region [ is activated by the control signal C.
The most efficient construction involves a photore-
fractive interaction region directly activated by light.
However, the electrooptic effect may also be used by
employing an amplified signal from a photodetector
that receives the C input.

The waveguide coupler of Fig. 2 is the basic building
block for constructing a general interconnection net-
work. As an example, a four-input, four-output net-
work is shown in Fig. 3. Checking all possible switch-
ing combinations, one can show that with this
arrangement any input signal a; (i = 1, 2, 3, 4) may be
coupled into any output port b;. In other words, all
twenty-four permutations of the four inputs are possi-
ble with four layers of awitches and a total of six switch-
es. In general, for n = 2N channels, one needs n
interaction layers and n(n — 1)/2 switches to establish
all n! possible permutations of the inputs.

. mplementation of Residue Arithmetic by Optical
Fredkin Gates

The calculations in residue arithmetic have a cyclic
nature. Therefore, they can be implemented by phys-
ical properties that are also cyclic in nature. Using the
cyclic property of the phase or polarization of light,
optical residue-based processors have been devel-
oped.>!12 A major problem with these implementa-
tions is that precise control of the phase or polarization
of light is usually difficult and requires bulky devices.

A better technique is to use positional coding for
data representation.!3-!2 The input and output of a
residue processor modulo m can have integer values
from zero to m — 1. Since the modulus is usually a

Fig. 2. Waveguide coupler implementation of the Fredkin gate.
[ is the interaction region where coupling is switched ON or OFF.

LAYER Neo. | 2 3 4

Fig. 3. Fredkin gate array of four channels and four switching

layers.
3
N N+2 N N
) o 0 )
2 2 2 —_2
3 —/ 3 S o——— 3
(g} (o)

Fig. 4. Example impiementations of functions in residue arithme-

tic by interconnecting systems: (a) addition of 2 to a residue num-

ber modulo 4: (b) raising a residue modulo 4 number by power 3.

The input is entered from the left, and the output is obtained from
the right.

small number, it is practical to have m channels corre-
sponding to these values. An input number is then
coded as the presence of light in the channel that
corresponds to its value. Any process on the input
data is possible by coupling the light from the input
channel to the appropriate output channel using an
interconnecting system.

As illustrative examples, two interconnections that
implement residue functions modulo four are shown in
Fig. 4. The system in Fig. 4(a) adds two to an input
number in residue arithmetic. Using modulo four, the
possible values of the input number are 0, 1, 2, and 3.
With the above operation, these values are mapped to
2,3,0, and 1, respectively. Figure 4(b) shows a system
that provides the third power of a residue number
modulo 4. Other residue functions can be realized by
similar interconnections.
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Optical Fredkin gates in conjunction with page-ori-
ented holographic memories can be used to implement
the interconnections required for residue arithmetic.
Figure 5 shows such a processor that uses modulo 4.
Starting from the top, the four channels correspond to
integers 0, 1, 2, and 3. Depending on the processes of
interest, a number of holograms are recorded at differ-
ent locations of a holographic material. The input
number is coded as the presence of light in one of the
input channels on the left, and a laser beam is deflected
to a particular hologram corresponding to the required
process. The reconstructed beams activate some of
the switching elements coupling the light from the
input channel to the appropriate output channel.

The above processor can be realized with present
technology. Optical waveguide couplers can be fabri-
cated using integrated optics technology.!® Different
holographic materials such as photographic films,
dichromated gelatin, thermoplastic materials, or pho-
torefractive crystals can be used for recording.’ Fi-
nally, the deflection of the laser beam can be achieved
by an acoustooptic cell.2! With the progress in the
technology of spatial light modulators, they may re-
place the combination of the acoustooptic deflector
and hologram. However, their operation will be rela-
tively slow. In the following two sections, the imple-
mentations of residue addition and multiplication
with this architecture are analyzed in more detail.

V. Residue Addition

To implement a residue operation on two numbers,
one of the numbers N, is used as the input to the
system, while the other number N is used for selecting
the proper interconnection. To illustrate this point,
Fig. 6 shows the four types of interconnection (maps)
that are needed for impiementing residue addition
modulo 4. One of these maps [Fig. 6(a)] is a
straightthrough interconnection which can be ob-
tained by default; there is no need to activate any
switches. Each of the other three interconnections
can be realized by activating some of the switches.
Therefore, the whole residue addition modulo 4 opera-
tion can be implemented with four channels and only
three holograms (Fig. 7). In general, the implementa-
tion of residue addition modulo m requires a Fredkin
gate array of m channels and m layers, thus m(m — 1)/2
switches, and recording m — 1 holograms.

In practical cases, a digital systema should have a
large dynamic range. This can be achieved by choos-
ing a set of pairwise relatively prime moduli. The
optimum set of moduli, in the sense of covering the
required dynamic range with minimum number of ho-
lograms, consists of numerous small moduli which are
either prime or powers of prime numbers. The proce-
dure for selecting such a set of moduli for a required
dynamic range can be found in Ref. 22.

As an example, a 16-bit fixed-point operation re-
quires a dynamic range of 2!6 = 65,536. The optimum
set of moduli for this case is {3, 5, 7, 8, 11, 13}, which
covers a dynamic range of 120,120. Each modulus m;
is treated individually by devoting m; channels to it.
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POHM

Fig. 5. Schematic diagram of the proposed processor: POHM.
page-oriented holographic memory; OFGA, optical Fredkin gate

array.
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Fig. 6. Interconnections corresponding to residue addition (N; +

Ng)modulo 4. Theinterconnections (a), (b}, (¢), and (d) correspond

toN,=0,1,2,and 3, respectively. The input NV, is entered from the
left, and the output N, + N, is obtained from the right.
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Fig. 7. Required switching states for implementing residue addi-

tion (N + Ny) modulo 4. The hatched switching elements are ON.

The four interconnections realized in (a). (b), (¢). and (d) correspond
to Ny = 0, 1, 2, and 3. respectively.
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Fig. 8. Interconnections corresponding to residue multiplication

(Ny X N») modulo 4. The interconnections (a), (b), (c), and (d)

correspond to N3 = 0, 1, 2, and 3, respectively. The input N, is

entered from the left, and the output Ny X N, is obtained from the
right.

Considering residue addition, the number of required
holograms corresponding to moduli 3, 5,7,8,11,and 13
are 2, 4, 6, 7, 10, and 12, respectively. The number of
switches corresponding to the above moduli are 3, 10,
21, 28, 55, and 78, respectively. Therefore, the 16-bit
fixed-point addition can be implemented in residue
arithmetic by a page-oriented holographic memory
consisting of forty-one patterns and a waveguide gate
array co.:sisting of forty-seven channels and 195
switches.

V. Residus Multiplication

The implementation of residue multiplication by
Fredkin , ates is not as easy as the residue addition
case. T sisdue to the difference that exists between
the types of interconnection needed for these opera-
tions. Residue addition has the property that each
possible . alue has the same number of occurrences in
the output. Also, the mappings corresponding to resi-
due addi*ion are one-to-one (onto). These properties
are not v:lid for residue multiplication.?? For exam-
ple, the four interconnections corresponding to residue
multipliction modulo four are shown in Fig. 8. It can
be seen tiat the occurrences of the output values are
not the same and that two of the mappings [(a) and (c)]
are not ¢ 1e-to-one. Using Fredkin gate arrays, any
permutation of the input signals can be achieved.
However, no two input signals can be coupled into the
same output port. Therefore, Fredkin gate arrays are
naturally suitable for onto mappings, and some modi-
fications are required to implement a general case as
described in the following subsections.

A. Increasing the Number of Holograms

One method for implementing residue multiplica-
tion with optical Fredkin gates is to increase the num-

ber of holograms. The selection of the appropriate
hologram for a specific case then depends on both
input numbers. As an example, we discuss residue
multiplication modulo 4. The realization of the inter-
connection for the N, = 0 case [Fig. 8(a)] requires the
recording of three holograms corresponding to Ny = 1,
2, and 3. The case of N; = N> = 0 does not need a
hologram, since zero-to-zero coupling does not require
any switches to be activated. Similarly, the N, = 1
case [Fig. 8(b)] does not require any holograms, since it
corresponds to a straightthrough interconnection.
The Ny = 2 case [Fig. 8(c)] requires the recording of two
holograms, one for Ny = 0 and 1, the other one for N| =
2and 3. Finally, the N; = 3 case [Fig. 8(d)] requires
one hologram, since it corresponds to an onto mapping.
Therefore, the whole operation of residue multiplica-
tion modulo 4 can be implemented by 3 +2 + 1 =6
holograms.

In general, the number of required holograms for
multiplication mod m = p”, where p is a prime number
and n is a positive integer, can be obtained from

N,=(n+1)p"~np*! -2 (2)

The derivation of the above formula is provided in
Appendix A. For the special case of n = 1, Eq. (2) is
reduced to Ny = 2p — 3.

As an illustrative example, the number of required
holograms for implementing residue multiplication
moduli3,5,7,8(=2%,11,and 13are 3,7,11,18,19,and
23, respectively. The 16-bit fixed-point multiplica-
tion that uses the above moduli can, therefore, be
implemented by eighty-one holograms. This is about
twice the corresponding number for 16-bit addition.
The number of required channels and switches are the
same as those for the addition case, i.e., forty-seven
channels and 195 switches.

This method may be useful for some applications,
but the problem is that the deflection of the laser beam
to the appropriate hologram depends on both input
numbers. This is sometimes practically difficult to
achieve and requires a partial electronic processing.
Also, since one of the numbers should be presented in
two forms (as the input to a waveguide and as the input
to the beam deflector) the system is not cascadable.
The method described in the next subsection over-
comes these shortcomings.

B. Increasing the Number of Channels

Another method for implementing residue multipli-
cation is to increase the number of channels. In this
method, the number of channels that are devoted to
each value is determined by the maximum degeneracy
of that value in the output. We demonstrate the pro-
cedure again by the residue multiplication modulo 4
case. As shown in Fig. 8, the maximum degeneracies
of the values 0, 1,2, and 3 in the outputare 4,1,2,and 1,
respectively. Therefore,atotalof 4 + 1 +2 4+ 1 =8
channels is needed to implement this operation (Fig.
9). The extra channels are used to make many-to-one
mappings possible. In the input, only one channeli is
needed to code each value. The input values 0, 1, 2,
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and 3 are coded as the presence of light in the first,
fifth, sixth, and eighth channel, leaving the other input
channels idle. In the output, the presence of light in
one of the first four channels is an indication of the
result being equal to zero. If the result is 1, light
should appear in the fifth channel; if it is 2, light shouid
appear in either the sixth or seventh channel; and if it
is 3, light should appear in the eighth channel.

Figure 9 shows how the required interconnections
for residue multiplication modulo 4 can be obtained.
The four cases shown in this figure correspond to N, =
0, 1, 2, and 3, respectively. In each case, the switches
that should be activated are marked. Notice that the
N; = 1 case does not require activating any switches.
Therefore, the whole process can be implemented by
only three holograms. In general, using this tech-
nique, multiplication modulo m requires m — 1 holo-
grams (same as the number required for residue addi-
tion).

The fact that more than one channel is devoted to
some output values does not produce a problem in
cascading these processors. One method for cascading
is to merge all the output channels that correspond toa
particular value by using a transition region. Also,
notice that the above architecture used for implement-
ing non-onto mappings can also be used to handle onto
mappings. Forexample, the same waveguide couplers
that are used for realizing residue multiplication can
be used to realize residue addition as well. In this case,
some of the channels will not be used, since for imple-
menting an onto mapping, only one channel is needed
for each value.

The number of channels required in this technique
depends on the modulus. In general (see Appendix
B), the number of required channels N, for multiplica-
tion mod m = p* where p is a prime numberand nis a
positive integer, is given by

N,=(n+1)p"—np"t 3)

For the special case, where n = 1, Eq. (3) is reduced to
N.=2p—-1,

It is interesting to note that the number of channels
in this method is very close to the number of holograms
in method A. In fact, the two numbers differ by a
constant of 2. This difference is due to the two inter-
connections (corresponding to the N; = N; = 0and N,
= ] cases) that are realized by default in the first
method. If two holograms are considered for these
cases, the two numbers become identical.

Another interesting point is that, although the num-
ber of input and output channels in Fig. 9 is eight, only
five interaction layers and seventeen switches are used,
because not all permutations of the input channels are
needed. For example, if N\ = 3, the input light does
not have to be coupled to the first three channels of the
output. In general, the number of required interac-
tion layers N for residue multiplication is

-V,’Avr‘m‘.’l. [£}]

where N. is the number of channels and m is the
modulus. Having the number of layers, the number of
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Fig. 9. Required switching states for implementing residue multi-

plication (N; X N3) modulo 4. The hatched switching elements are

ON. The four interconnections realized in (a), (b), (c), and td)
correspond to N; = 0, 1, 2, and 3, respectively.

switches N, can then be found from the corresponding
expression for an array of N, channels and N, layers,
ie.,

N, = [(N, - DN/2]. (5)

If N. is even and N, is odd, depending on the structure
of the gate array, N, is the nearest upper or lower
integer of the value inside the brackets. It is possible
to design the array so that N, is the nearest lower
integer.

As an illustrative example, the number of required
channels for implementing residue multiplication
moduli 3, 5,7,8 (=23),11,and 13 are 5,9, 13, 20, 21, and
25, respectively. The 16-bit multiplication that uses
the above moduli can, therefore, be implemented by
ninety-three channels. The number of interaction
layers required for the above moduli are 3, 5, 7, 13, 11,
and 13, respectively. The corresponding number of
switches are 6, 20, 42, 123, 110, and 156, which add up
to457. The number of required holograms is the same
as the 16-bit addition case, i.e., forty-one.

VI. Other Applications

A major advantage of the second architecture is that
it is cascadable. The output of the processor appears
as the presence of light in a particular position, where
an input channel of the next processor may exist. One
possible application of the cascading property is the
evaluation of polynomials. Horner’s rule for polyno-
mial evaluation is well known. For example,

P(x) =ax* +ax +a.x’ +ax + a
= |[(ax + ay)x + a,)x +a,lx +a,. 16)

This can be easily pipelined into a set of operations on
an optical input signal using the values of x and g, as
the inputs to the deflectors (Fig. 10). Since positional
coding has been used for data representation, minor
light losses do not prevent such cascading. Polynomi-




al evaluation is a very powerful operation because
many functions can be represented accurately by a
polynomial.

The propoeed architecture is not limited to perform-
ing a series of arithmetic operationa. In fact, any
mapping in the residue system can be performed by
this processor. To allow for all possible mappings, m
channels should be devoted to each possible value,
where m is the modulus used. Thus an crray of m?
channels is required for the most general operation.
The input number N; can be coded as the presence of
light in one of the channels that correspond to its value.
Depending on the mapping of interest, a particular
hologram is selected by the second input number N.
The reconstructed light activates some of the switches
and couples the input light to one of the m output
channels that correspond to the result.

Vii. Conchisions

A residue arithmetic processor based on optical
Fredkin gate arrays has been introduced. The proces-
sor consists of optical waveguide couplers and a page-
oriented holographic memory. The components
needed for the fabrication of this device can be
achieved with the present technologies in integrated
optics and holography. The device is insensitive to
variation in phase or polarization of light, since posi-
tional coding is used for data representation and pro-
cessing. And finaily, the processor is cascadable.

Realization of residue functions and operations with
this processor has been described. The implementa-
tions of residue addition and multiplication have been
analyzed in detail. The implementation of residue
addition is straightforward, since all the mappings are
onto. Residue multiplication is more complex, since
some of the required mappings are not onto.

Two methods have been described to realize non-
onto mappings with optical Fredkin gate arrays. One
method is to increase the number of holograms without
changing the number of channels. The second meth-
od, which appears to be more powerful, is to increase
the number of channels without changing the numbez
of holograms. The latter technique has the advantage
that the addressing of the holographic memory is de-
termined by one of the input numbers and, therefore,
can be achieved by a 1-D deflector, such as an acous-
tooptic cell.

The proposed processor is not restricted to the basic
arithmetic operations. It has been shown that more
complex operations, such as polynomial evaluation
and general mapping, can be implemented with this
architecture.

Appendix A: Number of Holograms in Method A

In this Appendix, analytic expressions are derived
for the number of holograms required for implement-
ing residue multiplication using the method described
in Sec. V.A. The two numbers involved in multiplica-
tion are N; and N,, where N, is coded as the presence of
light in a channel waveguide, while both V| and N, are
used as the input to the deflecting system. The re-

] a, x a,

Fig.10. Cascaded system for evaluating P(x) = g x4 + a3x% + apx? +
aix + ag using Horner's rule.

g}lired mappings for an example case can be seen in
ig. 8.

If the modulus is a prime number (i.e., m = p), all the
mappings, with the exception of the one that corre-
sponds to the N, = 0 case, are onto. This special case
requires p — 1 holograms, one for each of the nonzero
values of N;. No hologram is needed for N, = N, = 0,
since zero-to-zero coupling does not require any
switches to be activated. The remaining values of N,
(i.e.,1,2,...,and p — 1) produce onto mappings. The
N; = 1 case does not require any holograms, since it
corresponds to a straightthrough interconnection.
Each of the other cases requires one hologram. There-
fore, the total number of holograms is N, = (p — 1) +
(0-2)=2p-3.

If the modulus is not prime, more holograms are
needed. The case of interest is when the modulus is a
power of a prime number, i.e., m = p*. The number of
required holograms for this general case can be ob-
tained by analyzing the mappings involved as follows:

(1) The N, = 0 case maps all the inputs to the zero
output. Hence it requires m — 1 = p* — 1 holograms.

(2) The Ny = kp cases, where 0 < k < p*~!and k and
p are relatively prime, map the inputs to the output
ports that correspond to integer multiples of p. There
are (p — 1)p™~2 such cases, and each requires p holo-
grams. Therefore, (p — 1)p*~! holograms are needed
for these cases.

(3) Ingeneral, the N> = kp? cases, where 0 < ¢ <n,
0 <k < p"~9,and k and p are relatively prime, map the
inputs to the output ports that correspond to integer
multiples of p?. There are (p ~ 1)p”~9~! such cases,
and each requires p? holograms. Therefore, to realize
the cases corresponding to each value of g, the storage
of (p — 1)p*~ holograms is needed. Sinceqhasn -1
possible values, the total number of holograms corre-
sponding to all Ny = kp? cases is (n — 1)(p — 1)pr-L.
This includes the number of holograms obtained in (2).

(4) Inall the cases considered so far, N, is an integer
multiple of p. The total number of these cases is p~~1,
In the remaining p* — p*~! cases, N; and p are relative-
ly prime and produce onto mappings. The intercon-
nection for one of these cases (V; = 1) can be realized
without any hologram, while the others need one holo-
gram each. Therefore, p* — p*~! — 1 holograms are
needed to realize the interconnections corresponding
to these cases.

The total number of holograms for implementing
residue multiplication modulo m = p» using method A
can then be obtained by adding the numbers derived in
(1), (3), and (4). The result is

Ny=(p"=l+n=1Wp=1p" ' +(p"-p"! =1

=2n+ pt—np" -2 (A1)
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Appendix B: Number of Channeis in Method B

In this Appendix, analytic expressions are derived
for the number of channels required for implementing
residue multiplication described in Sec. V.B. The two
numbers involved in multiplication are N; and N,
where N, is coded as the presence of light in a channel
waveguide, and V; is used as the input to the deflecting
system. The required mappings for an example case
can be seen in Fig. 8.

If the modulus is prime, except the mapping that
corresponds to the N, = 0 case, the other mappings are
onto. For this special case, all values of N; should be
mapped to the zero output; hence p channels are re-
quired for the zero value. In all other cases, each
output value has a degeneracy of one. Hence each of
the values 1, 2, ..., p = 1 requires one channel.
Therefore, the total number of required channels is N.
=p+(p-1)=2p—1.

If the modulus is not prime, more channels are need-
ed. The case of interest is when the modulus is a
power of a prime number, i.e., m = p*. The number of
required channels for this general case can be obtained
by analyzing the maximum degeneracy of each output
value as follows:

(1) The maximum degeneracy of zero in the output
is p", which corresponds to the N; = 0 case. Therefore,
p* channels are needed for the zero value.

(2) Each value expressible as kp, where 0 <k < p*~!
and k and p are relatively prime, has a maximum
degeneracy of p. There are (p — 1)p"~2 such values.
Therefore, a total of (p — 1)p"~! channels is needed for
the above values.

(3) Ingeneral, each of the values expressible as kp9,
where0 <q<n,0 <k <p"~9,and k and p are relatively
prime, has a maximum degeneracy of p9. There are
{(p — 1)p*~9~! such values. Therefore, (p — 1)p*~! =
p* — p"~! channels are needed for each value of gq.
Since ¢ has n — 1 possible values, a total of (n — 1)(p” —
p"1) channels is needed for all values expressible as
kp?. This includes the number of channels obtained
in (2).

(4) All the values considered so far correspond to
integer multiples of p. The total number of these
cases is p"~1. Each of the remaining p® ~ p"~! values
has a maximum degeneracy of one. Therefore, p» —
p"~! channels are needed for these values.

The total number of required channels for imple-
menting residue multiplication modulo m = p" using
method B can then be obtained by adding the numbers
derived in (1), (3), and (4). The result is

N.=p"+{n=1p"-pH+i(p"=-p"™hH

=(n+ 1)p* - np*~". (B1)
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Pattern recognition using reduced information

content filters

Joseph Shamir, H. John Caulfield, and Joseph Rosen

Pattern recognition by optical spatial filtering procedures is discussed using general considerations with the
objective of reducing the information content in the spatial filter. The achievement of this objective is very
useful toward the wide application of spatial light modulators and also for facilitating distortion invariant
recognition. The proposed novel approach is demonstrated by an example employing bipolar spatial filters
for rotation invariant pattern recognition.

. introduction

Usually the emphasis in research toward a useful
optical pattern recognition architecture is the attain-
ment of higher and narrower correlation peaks em-
ploying holographic spatial filters!-? with high infor-
mation content. For real-time applications one would
like to use devices like spatial light modulators that
cannot handle these large amounts of information.
The high information content is also a hindrance when
distortion invariance such as rotation or scale change is
considered. For example, both the matched filter?
and its more recent variant, the phase-only matched
filter,34 yield high correlation peaks. Unfortunately,
these filters are the most intolerant of any distortion
because a large part of their information content is that
of the orientation and scale of the object.

The main objective of this work is development of a
pattern recognition approach taking into consider-
ation the resolution limitations of presently available
spatial light modulators. To achieve this goal we seek
a procedure for reducing to a minimum the amount of
information to be written on these modulators when
they are employed in the input and filter planes of a
pattern recognition system. It is evident that the
penalty to be paid is a reduction in the quality of the
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correlation peaks, but this will be a suitable price for
higher flexibility and easier applicability.

We start from general considerations that are inde-
pendent of the particular architecture to be adopted.
Most of the steps described may be applied to a diverse
set of configurations. For example, they are valid for
coherent or incoherent pattern recognition performed
by employing spatial frequency filtering or template
matching. To obtain shift invariance we shall restrict
the discussion to spatial filtering procedures over the
Fourier transform plane.

l. General Considerations

We define our goal to be the recognition of each
pattern in a set of N patterns, f(x,y), (¢ = 1,2,... .N).
The limitation to N predetermined patterns is not so
severe as it seems at first sight, since one or more of
these patterns may be noise or background. We form
2-D Fourier transforms (FTs), F.(u,v), and wish to
manufacture a set of filters M,(u,v), G = 1,2,... .M in
such a manner that we obtain an optimal response
represented schematically by the relation

R, = O[F {u.u); M (uw)] = § (1)

3y

where O is some operator. The degree to which we can
approach this ideal response depends on the operator,
the set of filters, and the patterns involved. Forexam-
ple, we may consider the integral power reaching the
output plane of the optical system, O(x,y), indicated in
the schematic representation of Fig. 1. By Parseval’s
theorem this power is identical with the power trans-
mitted by the filter positioned at the FT plane [M(u,v)
in the figure]. For this configuration criterion (1) has
the form

R, = f1F (uw)M (uof’dudy = 5, (2)
This, however, is a paradoxical requirement since we
deal with a positive definite integrand, and one may
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Exay) v vx-v) This is a very far reaching consequence as it means that
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Fig. 1. Spatial filtering system: L, Fourier transforming lenses of
focal length f; f(x,y), input pattern; O(x,y), output pattern; and

M(u,v), filter function.

have a nonvanishing filter function only for { = j.
Naturally, such a criterion cannot lead to a selective set
of filters, and one should seek a solution that involives
the analysis of a power redistribution over the output
plane.

As our starting point we refer to Fig. 1 and define the
response according to Eq. (1) as the power incident at
the origin of the output plane. (Since we are dealing
with Fourier plane filtering the position of this origin
corresponds to the position of the object in the input
plane.) Denoting by O;j(x,y) the output distribution
produced by pattern F;(u,v) illuminating filter M;(u,v)
this recognition criterion states

R, =10,(00)% =3¢, 3
where, in the configuration of Fig. 1,
0;,(x,y) = FIF (u,v)M (u}], 4)
and Eq. (1) is now equivalent to
[ fFi(u,0)M (uv)dudy =5, (5)

This relation represents a set of linear equations
that can be solved, at least in principle, to generate the
filters M;(u,v).

ll. Filter Generation

To solve Eq. (5) for each filter and generate M; we
have to sample the Fourier plane. Assuming a rectan-
gular coordinate system we divide the Fourier plane
into K X L regions of area sx;, each (not necessarily
equal) withk=1,2,... Kand!=1,2,...,L. Toeach
of these regions we designate a constant value M)y, as
its (generally complex) amplitude transmittance.

Integrating the incident complex amplitude over
each region we form the matrix elements

Fu= f F,(u.0)dudr. 6)
Sai

and we may generate the filter samples by solving the
set of N? linear equations:

K L
S FuMp, l =4, )

hwi ()

wherei,j =1,2,... N.

Fquation (7) gives N equations for each of the N
filters M;(u,v) consisting of K X L unknown samples.
Thus one may obtain a unique solution if K X L = N.
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to discriminate among N patterns it is adequate to use
filters with N transmittance values. We have to point
out, however, that the above conclusion is only theoret-
ical and holds if filters and detection can be imple-
mented with infinite dynamic range and infinite accu-
racy. Furthermore, the above relations were obtained
by constraints imposed on a single point in the output
plane. For a satisfactory discrimination, taking into
account practical considerations, this will usually not
be adequate, and the number of equations (and sam-
ples) will have to be multiplied by the number of
required discriminating points. This procedure es-
sentially generates a synthetic discriminant function
(SDF).5

We considered up to this point N X L rectangular
sample regions just as an example. To attain efficient
recognition the area and shape of these samples must
be optimized according to the recognition task. For
another example we consider rotation invariant pat-
tern recognition with rotationally invariant filters.
For this case the filter division is along concentric
rings. Denoting the radius of the kth ring by r, we may
have to look for an optimal function h(k) that gives the
various radia

r, = h(k). (8)

An interesting and simple class of these functions
can be written in the form

h(k) = r k9, 9

wherer; and g are constants. Thespecial case of ¢ =1
is the Fresnel zone division where all the rings have the
same area, while the case ¢ = —!; may be termed the
inverse Fresnel zone plate (i.e., the kth radius of the
Fresnel zone plate multiplied by the kth radius of the
inverse Fresnel zone plate is a constant for all k).
These two kinds of division complement each other
with respect to the nature of patterns to be discrimi-
nated. The first kind of division has rings that become
very narrow for high spatial frequency values, thus
making it a good rotation invariant filter for patterns
having their important features at high frequencies.
Conversely, the second choice will be suitable for filter-
ing information at low spatial frequencies. An inter-
mediate case may be treated with filters having g = 1
where the width of the rings is constant. This analysis
is reminiscent of the procedures utilized in Ref. 6
where a specific circular harmonic was chosen for each
recognition task depending on the objects to be dealt
with. Sometimes the useful information is concen-
trated only in certain regions of the filter plane. For
example, in many cases the low frequency region does
not contain selective information, and better filtering
is obtained by eliminating the energy in this region
altogether.

A similar procedure would be implemented for com-
plete scale invariant pattern recognition where the
filter should depend on angular orientation only and
not on the distance from the origin. For this case one
would need radial division lines to split the filter plane
into L sectors.




A

YR

Fig. 2. Two random patterns to be discriminated.

V. Bipolar Filters and Experiment

In principle the filters described in this work can be
generated similarly to other composite filters or circu-
lar harmonic filters® as computer generated holo-
grams. However, the present procedure has a more
general attitude, and other implementations are also
possible. Although the information content of these
filters is relatively low, a holographic filter needs still a
quite large bandwidth. To reduce this requirement
we show now that filters with real, positive, and nega-
tive valued transmission characteristics can perform
reasonably well even for rotation invariant pattern
recognition. It has been shown?® that the implementa-
tion of such bipolar filters is possible, and with the
advent of spatial light phase modulators the procedure
becomes rather simple. One major advantage of work-
ing with nonholographic spatial filters is the in-line
architecture of the whole optical system.

In a bipolar filter the amplitude transmittance of
each filter element is real and satisfies the relation

“1SMy <1 am
This is a very serious constraint on the equations de-
termining these values (Eq. (7)], and in many cases
such solutions are not available. The only way to get
around this problem is to relax the conditions on the
right-hand side of the equations and optimize the solu-
tions.

To demonstrate the procedure we implement a com-
pletely rotation invariant filter. For a general treat-
ment of rotation or scale invariant pattern recognition,
it is useful to represent the input pattern in polar
coordinates. We denote by F(r,0) the complex ampli-
tude distribution produced by the input pattern at the
filter plane, and we employ a circularly symmetric
filter. We divide the filter plane into N concentric
rings (where N is now the total number of divisions as
discussed in the previous section) and denote by M,
the transmittance (real, positive, or negative) of the
kth ring in the jth filter. Equation (6) can be now
rewritten in the form

Fig. 3. Rough representation of a rotationally invariant bipolar

filter made for recognizing the top pattern of Fig. 2.

Fig. 4.

Qutput intensity distribution with input of Fig. 2 and opera-
tion with the tilter of Fig. 3.

F,= [ F.(r2xrdrdh. 338

where integration is performed over the area of the kth
ring sx. With these definitions Eq. (7) will be replaced
by

NrM,
Since this relation concerns the absolute values of each
equation, an arbitrary phase may be assigned to render
the values of M, real.

To test the viability of the present approach some
computer experiments were performed, and rotation
invariant recognition was demonstrated. One experi-
ment involved random patterns as shown in Fig. 2.
The filter plane was divided into sixty-four concentric
rings, and filters were generated according to Eq. (12).
Figure 3 is an approximate representation of the rota-
tionally invariant filter made for one of the patterns,
while Fig. 4 is the intensity distribution over the fil-

(R4}

= 1):IA
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Fig. 5. Cross section along a diameter of the filter with removal of
low frequency components.

Fig. 6. Output intensity distribution for the input of Fig. 2 and
filter of Fig. 5 prepared for recognizing the top pattern.

tered output plane. The result is quite noisy in part
due to a large fraction of energy transmitted at zero
spatial frequency that contains no information about
the object. If this frequency component is removed by
a modified filter, the cross section of which is shown in
Fig. 5, the filtered output shown in Fig. 6 is obtained
with an appreciably enhunced SNR.
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V. Conclusions

A simplified approach to optical pattern recognition
was proposed to make its practical application more
feasible. As anexample of possible implementation of
the present approach a recognition criterion was cho-
sen so that the filters contain information about the
complete complex amplitude distribution of the pat-
terns. Using computer experiments it was shown that
adequate information may be contained in bipolar fil-
ters to recognize patterns even in a completely shift
and rotation invariant manner with no need for holo-
graphic filters. In a subsequent publication it will be
shown that the approach presented here can be em-
ployed for different kinds of filter, i.e., phase filters,
and patterns of various nature.

It should be emphasized that criterion (1) can never
be exactly satisfied. Further studies are carried out to
search for possibly better criteria that may also be
easier to implement optically.

This work was partially supported by a contract with
NASA Johnson Space Center under contract NAS9-
27598.
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Rotation-Invariant Pattern Recognition and Some of Its Limitations
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Abstract

Rotation-invariant pattern recognition is shown to have intrinsic limitations determined by the set of
patterns to be recognized and by the specific optical setup. Within these limitations, a general procedure
is proposed for the generation of bipolar filters that do not require the sensjtive alignment procedures
involved in holographic filters and are suitable for superposition synthesis to achieve rotation invariance.

Introduction

The oldest and most straight forward approach to pattern recognition is image plane analysis (or
template matching) where one compares the image of the object with some stored pattern. If the object is,
for example, a typed page, one should scan the page to locate each letter and then compare it with given
templ~ie letters. To consider the additional possibility that some of the letters may be rotated we shall
have to perform a rotation for each template at each letter position. In an automatic system that has to
perform all these operations. we a-e confronted by an incredibly time consuming task even for the most
advanced computers. Therefore it would be very useful to replace the templates by some rotation-invariant
filters whenever possible.

Besides the problem of rotation, the main drawback of image-plane analysis i{s its position dependence.
This problem is resolved by transferring “he image plane operation to the Fourier-plane where the whole input
information is addressed simultaneously. The conventional optical system perform this procedure is shown in
Fig. 1. A coherent plane wave illuminating the input function f(x.y) operates its Fourier transforms (FT) over
plane M giving rise to a complex amplitude distribution, F{u,v). One may record the intensjty distribution
on a photographic plate to produce a filter with amplitude transmittance | F2 |  Reinserting this filter into
place M and replacing the function f by some other function. g(x,y) produces a complex amplitude distribution
immediately to the right of M given by G | F |2, where g is the FT of g. An additional FT performed by the
second lens ylelds, on the output plane, O, the triple convolution:

g(X.Y) * £ (-x.-V) * £(x.Y) (1
£(x,y) M(u,v) 0(x,y)
| | |
| I l
| | |
| | |
L-—— £ f ——lt f —p= f :!l
L T

Fig. 1. 1In-line spatial filtering system: L-Fourier traunsforming lenses of focal
length f; f(x,y) - input pattern, O(x,y) - output pattern and M(u,v) -
filter function.

where * denotes convolution and t. is the complex conjugate of f. Expression (1} i{s the required cross-
correlation of f and g but this is convolved with the function f that makes it a rather poor seasure of
correlation even before considering rotations. It should be noted. however. that this kind of filter is just
one possibility. For example, a better response could be obtai?ed by using the same filter as an intensity
filter insiead of amplitude filter with incoherent illumination®.

To obtain an appreciable improvement over the above considered possibilities, most of the presently
practiced optical methods for pattern recognition 2 are based on the holographic matched filter, first pro-
posed by VapderLugt2< This Fourjer-plane filter has a high r solutfon but is very sensitive to misalignment.
object scaling and object rotation. From the practical point of view one seldom needs this high sensitivity
and the stringent alignment requirements limit the applicability of method.
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Many attempts were made to render the VanderLugt filter orientation insensitiye: vVarious averazing
aethods 4-12 to produce filters that recognize classes of objects rather than specific p;tterns were quxtg
successful and, to some extent, could also be generalized to treat a range of angular orientations. Spatial
aultiplexing techniquel13'15 are useful in principle but not very practical due to aliznneqt problems andt in
aost cases, the involvement of mechanically moving components. Photodetector array detection on the Fourier
plane16 and computer processing is also possible but it is applicable only for sing]e-pattern-atfa-tige ana-
lysis. Recently some more sophisticated rotation-invariant methods were proposed where the spatxa! f:1r§;s18
are based on circular harmonic decomposition generated by digital computers and recorded holographicallyi’--
In principle this approach proved quite efficient but, unfortunately, it involves elaborate hardware anq the
use of inconvenient components such as liquid gates that hinder its practical application. The genefallzed
analysi- of Ref. 19 may be helpful fo estimate the respense of filters with various degress of ro;atxon
invariance to a specific input but this should be augmented with some derivation of filter selectivity to
different inputs.

In this work we address first the general question of the limitations imposed on rotation invariant pat-
tern recognition by the intrinsic nature of cptical methods. [t will be indicated that thg answgr depends'on
the specific patterns to be recognized and on the actual procedures applied. With these l{nitat1ons kept in
mind we propose a new approach to the synthesis of filters. This approach should be straightforward to
implement and eacy to use in practice.

II. Some Limitations On Rotation-Invariant Pattern Recognition

Addressing the general question of rotation-invariant pattern recognition, we use polar coordinates to
represent the input pattern, f(r,0). At this state, f represents the complex amplitude distribution produced
by the input pattern at the filter plane where we insert a filter with amplitude trasmittance m(r.6). This
plane may be either the image plane or the Fourier plane, whichever is more convenient for a certain applica-
tion. As pointed out in Ref. 19 there are a aumber of ways to define the performance of a filter. One of
these possibilities is the integral detection of all the light arriving at the output plane. Using the prin-
ciple of energy conservation this integral quantity i{s given by the total power transaitted by the filter:

21 rg

R(0) = | sr.0)f(r.0) ] Zrdrde (2)
00

where ry .represents the size of the filter assumed circular. To investigate the response for rotated objects

we may keep the object constant and rotate the filter assuming that all the rest of the systea is circularly

symmetric. The response with the filter rotated into the 89 orientation may be described by the relation,

2% ry
R(8g) = | m(r.0 - 89) | 2] £(r.0) | 2 rdrde (2a)
00

If we want to make this response rotation-invariant we have to require.

R(6; , ,

36g

(3)

which leads to the obvious result that | a | should be independent of the angular coordinate. & apart from a
phase variation that may change the output distribution but not its integral power. Thus., to generate a
rotation-invariant filter one has to apply some amplitude averaging procedures over the angular coordinate.

The most general result from these considerations is that rotation invariant pattern distinction is
possible only among patterns the angular average of which differ from each other at the filter plane. Later
it will be indicated that the response of Eq. 2 is not very discriminant detection. Nevertheless, the
conclusion regarding the angular independence of Il Ifor rotation invariance is quite general but in most
cases restrictions may arise also for the phase variation.

It is very useful to note here that the same class of patterns that is suitable for rotation-invariant
recognition in the image plane may be impractical for rotation invariant recognition in the Fourier plane.
Difficulties that may occur can be illustrated by consideraing the simple block characters as shown in Fig.
2. Assuming that the lines composing the characters are transparent while all the rest {s opaque, we rotate
each character around its center of mass and record the transaitted intensity in the image plane. Many of
the patterns m(r) generated this way will have different features characteristics of the original letter.
Thus, in principle, these masks may serve as some crude rotation invariant recognition "templates” for the
set of characters. This may not be the case if we convert to Fourier plane analysis.
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Figure 2. A sample of characters for recognitiom.

The most general result from these considerations is .hat rotation invariant pattern distinction is
possible only among patterns the angular average of which differ from each other at the filter plane. Later
it will be indicated that the response of Eq. 2 is not very discriminant detection. Nevertheless, the conclu-
sion regarding the angular independence of |n | for rotation invariance is quite general but in most cases
restrictions may arise also for the phase varjation.

It is very useful to note here that the same class of patterns that is suitable fcr rotation-invarjant
recognition in the image plane may be impractical for rotation invariant recognition in the Fourier plane.
Difficulties that may occur can be illustrated by consideraing the simple block characters as shown in Fig.
2. Assuming that the lines composing the characters are transparent while all the rest is opaque. we rotate
each character around its center of mass and record the transmitted intensity in the image plane. Many of
the patterns a(r) generated this way will have different features characteristics of the original letter.
Thus, in principle, these masks may serve as some crude rotation invariant recognition "templates” for the
set of characters. This may not be the case if we convert to Fourier plane analysis.

Figure 3 shows the optically generated FT of the characters in Fig. 2. The highest and most intense
spatial frequency components are generated by the lines constructing the characters. The absolute magnitude
of these components is almost identical for all the characters, the distinguishing feature being only in the
orientation of the FT produced by the various line segments. At first sight it would appear that a rota-
tionally invariant mask placed in this plane will have diffjculties in distinguishing among these unless it
can resolve minute differences due to various lengths of the line segments. It can be seen, however., from
the rotational averages whown in Fig. 4 that appreciable differences still exist but they will decrease as
the line segments get longer when compared to their width. Stated in a more general way, the class of pat-
terns generated by narrow lines (such as line drawings) where the line-width is the minimum feature size with
all other features having much larger dimensions, is not sujtable for rotation-invariant pattern recognition

in Fourier plane procedures.

Optical lourier iransform of characters from fig. 2.
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Figure 4. Rotation averages of transforms in Figure 3.

III. Bipolar Filters For Pattern Recognition

The two extreme approaches for the generation of spatial filters for pattern recognition, i.e. the power
spectrum fillter and the holographic matched filter, were discussed in the introduction. Observing the pre-
sent state of art it appears that the performance of the first kind is too poor while the applications of
holographic filters are tedious and frequently require quite sophisticated hardware and software. In this
section we introduce a modified approach to filter synthesis that should be simple to implement and to use.
To achieve this goal we consider the following requirements: a) The spatial filter should be less sensitive
than a holographic filter but should have a better performance than the simple power spectrum filter: b} The
pattern recognition system should give a high response for a specific input together with a negligible output
for any other pattern included in a ziven set:;: c¢) Since we are interested in rotation-invariant pattern
recognition the proposed method should be applicable for this purpose too. One way to meet requirement (a)
is by the synthesis of a medium resolution filter that discards most of the phase information retaining some
of 1t in a bipolar form. The filter will also conform with requirement (b) if its generation will take into
consideration all the patterns to be analyzed. In the following we propose a number of variations to the
implementation of such filters and convert them into rotation-invariant filters in the next section.

Bipolar pattern recognition {s usualy considered in connection with incoherent illuminationl.20,
However in the present procedure we start from general considerations that are applicable to incoherent as
well as coherent illumination. either for processing performed in the image plane or the Fourier plane. To
keep this work within reasonable limits we shall mainly address Fourier plane processing with coherent
illumination.

In Refs. 4-8 various mathematical procedures were investigated for the synthesis of composite matched spa-
tial filters. Adopting a similar approach we rely on the fact that the procedure has been proven to be
mathematically sound and simplify the derivation by avoiding steps such as decomposition into sets of

orthor-normal functions. Consider a set of patterns, fi(x.y)., ({ = 1.2,...N) to be discriminated against
sach other. We form their 2-dimensional FT, Py (u,v) and wish to manufacture a set of filters My (u.v). (J
= 1.,2,... N) in such a way that they will transmit light only if {lluminated by a specific pattern.

Mathematically, this requiremwent may be expressed by the relation.

ff Fy (uv) 2] !J(u.v)zdudv =£xj.

where we assume Hj to be a complex amplitude transmission function. Unfortunately this is a paradoxical
requirement since we deal with positive definite integrands. Therefore. any | Fy |t 0 requires {My | =0
for all { $J resuiting with, at the most, one filter that transmits light. Naturally, such a criterion
cannot lead to a selective set of filters indicating that the response function of Eq. (2) 1is not a good
choice for our purposes. To improve performance we take one step towards a holographic matched filter (the
main function cf which is a certain redistribution of the power over the output space) and try a bipolar set
of filters with the requirement,

ff! Fi{u,v) HJ(H.V) dudv = {‘1" (4)

SPIE Vol. 613 Noniinear Optics and Applications ( 1986}/ 263




.
|
I
I
i
i
[
i
i
i
]
i
i
i
}
i
|
i
’

One way to synthesize a set of real filters that satisfy this relation is by the linear superposition (a
composite filter),

My = agy | Felu,v) | (5)

where a j are real (positive or negative) constants and summation over identical indices is postulated.
Althouzk the functions |F1 {u,v) | do not constitute an orthonormal set one may still substitute Eq. (5)
into Eq. (4) and solve the following set of lequations,

akjd fl Fy (u.v) I Fk(u-v)l dudv = Jij (8)

to evaluate akj'

Defering to a later stage the discussion of some difficulties involved in this procedure, we proceed to
investigate the performance of the system asuming that we possess a filter set described by the charac-
teristics indicated in the above relations. Inserting one of the filters, M,, into the Pourier plane, M of
Fig. 1, we illuminate it with pattern tn' placed in the input plane. For cénvenlence. we write the FT of
fn in the form,

Fn(u.v) = [Fn(u.v) |expiwn(u.v) o

where wn (u,v) is a real phase function. The complex amplitude distribution Eq. (7) is transmitted by the
filter and transformed by the second lens to produce the output distribution,

0(x,y) =F(FyMj)= akgl(l Fo 1P Lexp i¥)) (8)
whereﬂ’ represents FT. In most cases of interest here, where we shall deal with real input patterns, the
main contribution of the phase function will be a translation of the output pattern to a location

corresponding to its position on the input place. Thus it is useful to consider alternative form:

o(x,y) = akjff(l Fo llF 1) *Ftexp o ¥,) (9)

Since convolution is a linear process, one may perform the summation on k first and the convolytion after-
wards. The summed function reduces at the origin to Eq. (6). Thus one would expect a strong correlation
for n = k with some weak and blurred responses for all other input patterns produced by some contribution
away from the origin. The convolution with the phase function will introduce a partial reconstruction of
the object and position it according to its location in the input plane.

IV. Rotation-Invariant Spatial Filters
In the following, we restrict ourselves to sets of patterns that are, in principle, suitable for rotation
invariant recognition and use a procedure similar to the previous one.

We start by representing the functions, Pi in a polar coordinate systenm,

Fi(x.y) = Fy (r.0) (10)

and define a set of positive, real, normalized and rotation-invariant functions,

| Fycr.0) [ do
Ej(r) = (11)

| £ (r.0) | 2rdrde

According to our discussion on the limitations with rotation invariant pattern recognition we would
expect that discrimination will be possible if these functions differ "appreciably” among themselves. The
amount of difference implied by the word "appreciably” depends on the actual experimental systems. The dif-
ferences may be very minute for computer simmulation with arbitrary accuracy but should be much larger for a
real system. We shall return to this point at the end of this section.
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Following our previous procedure., we search for a set of filters that satisfy the orthogonality
relation,

(12)
jgg(r)nj(r)znrdr = ‘11
Here too, we shall generate these filters as linear combination of the input patterns:
nj(r) - akjgi (r) (13)

Substitution into Eq. (12) leads again to N linear algebraic equations
akjfgi(r)gk(r)Zmrdr - & (14)

To implement this filter set, one should determine the set Py. solve the linear equations for akjand
construct the filters accordingly.

Since the set gi is positive definite, the solution of Eq. (14) will lead to positive and negative

values for a,. As mentioned earlier, we gave up the complete phase dependence of the holographic fijlter
but we still ;equlre bipolar values.

There are a number of possible approaches for the practical construction of the above described filters
and here we proceed to describe one that may be called a quantized filter. Recalling that a ro*-=tion-
invariant filter should be circularly symmetric, we divide the Fourier plane into ¥ concentric rings. (The
spacing of these rings and the number N will be discussed in the next section). We now represent each of
the N normalized functions, E;‘F) (EqQ. 11) by a vector P,, with components p, ., proportional to the square
root of the total power incident on the j-th ring. The & circularly sylletrié filters will be also repre-
sented by vectors in N-space, M,, with components By that are the amplitude transmittance of the j-th ring
in the k-th filter. This circu§ar filters will attain its proper function if we require again the orthogo-
nality relation,

(13)
Peymxy ™ {1:( 5

2
This equation constitutes Nz linear equations for the determination of the N° elements of the matrix

My Since we are dealing here with a matrix it will be convenient to put the whole procedure into a matrix
foil: We construct the two matrices,

pll pl2 ... piN

p2l p22 ... p2N
P = i (16)
and :

Ppp oo PNN

"11 %21 .

nl2 =22 ... N1

(17)
BIN e LI

and write Eq. (15) in the convenient form,

PM=1 (18)
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where I is the unit matrix. Thus we see that the caiculation of our f:lter reduces to a simple inversion of
a matrix derived from measurement during the .earn:ng stage

M= p'1 LLRag

Equations (6) and (14) may be also put in this matrix form by replac:ng mkj and defining,

Pik ijij] Fi (u.v) || Fxlu,v) dudv (o

for Eq. (6) and simiiarly for Eq. (14), using the normalized functions 't is interesting to note that Eg
(18) represents a symmetric matrix which is not necessarily the case for the original matrix defined in
Eq. (15).

The limitations in the implementation of rotation-invariant filters discussed in section ! are imp:.
citly included in eq. (18a) and we may return to the phrase, “appreciably different” mentinned at the
beginning of this section. It is immediately evident that if we have twe identical patterns the matrix can
not be inverted. However, if there are two patterns that differ only slightly. a solution may be obtained
but with |m. . The result is that equations {in EQ. 15) having zero on their right hand side wili no:
their rightJ agaxside will not be affected but. unfortunately. many of the values unity wil! have to be
divided by the values unuity will have to be divided | we shall have tu deal with an autuvcorrelation repre-
sented by a small fraction 1 ! m ! maythat may be undetectable. For any practical system. this number
will determine the limits imposed on recognition possibilities.

V. Filter-Place Division

In the previous section the filter plane ws divided into N concentric rings without spec:fy:ng their
widths. The reason is that the optimai division actually depends on the ciass of patrerus tu He recognized
In principle one may use an arhitrary funciion to ue=‘ve the “adius e 0 *he n-*h circ'e in the filter
plane, '

r, = h(n)
An interesting and simple class of these functions can be written in the fourm,

h(n) = r n (21

The special case of q = 1/2 {s the Fresnel Zone division where all the rings have the same area while
the case q = -1/2 may be termed the "Inverse Fresnel Zone plate” (i.e the n-th radius of the Fresnel zone
plate multiplied by the n-th radius of the inverse Fresnel zone plate is a constant for al) n}. These twu
kinds of division complement each other with respect to the nature of patterns to be discriminated. The
first kind of division has rings that become very narrow for high spatial frequency values thus making it a
good rotation-invariant filter for patterns having their important features at high frequencies.
Conversely. the second choice will be suitable for fiitering information at iow spatial frequenc.es An
intermediate case may be treated with filters having ¢ = 1 where the width of the ~ings 1s copstan*. This
analysis is reminiscent of the procedures utilized in ref. 6 where a4 specific circular harmonic was chosen
for each recognition task depending on the objects ta be dealt with

The number of the rings in each filter may also be chosen iy a flexible way utl!izing optimization
algorithms. However. to avoid unnecessary compiications at this strage we made the number of rings equal to
the number of patterns that makes the solution of the equations (]3) unique Other implications of this
subject will be addressed in a subsequent work.

VI. Discussion

A simplified approach to optical pattern recognition was proposed to make its practicu. application more
feasible. Emphasis was placed on rotation-invariant pattern recognition and its intrinsic  :mitations
Some of the aspects treated have quite general implications. For example. it was shown that integrai
transmission detection is a poor measure for pattern distinction. Therefore the present procedure, Iike
holographic matched filtering, relies on the intensity distribution over the output plane. Further research
is required for the determination of the actual influence of various parameters sucn as infurmation content
and possible phase variation in the filter

The extension of the present method for class discrimination is, in principle. a straight forward pro-
cedure. For example, to implement a mask that determines whether 4 certain pattern belongs to a subset {A)
one might superpose all the mask vectors belonging to that subset

Ma = Ha] - KaZ - . ~Han (221

Although mathematically this relatinn is quite simpie, one should keep in mind the need for filter nor-
malization required by the physical limitatjons
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In a subsequent publication the subject of scale-invariant pattern recognition will be addressed using
a similar approach.

It is a pleasure to thank G. Daniels for performing the photographic work involved in this
investigation.
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Circular harmonic phase filters for efficient rotation-

invariant pattern recognition

Joseph Rosen and Joseph Shamir

A generalized approach for pattern recognition using spatial filters with reduced tolerance requirements was
described in some recent publications. This approach leads to various possible implementations such as the
composite matched filter, the circular harmonic matched filter, or the composite circular harmonic matched
filter. The present work describes new examples leading to very high selectivity filters retaining rotation
invariance and reduced requirements on device resolution. Computer simulations and laboratory experi-
ments shrw the advantages of this approach.

I. Introduction

Conventional methods of optical pattern recogni-
tion suffer from the requirement of high resolution
recording materials and distortion sensitivity. In
some recent publications!> a new, general procedure
was introduced that may be employed for generating
spatial filters with reduced resolution requirements.
Partial and complete rotation-invariance was demon-
strated in computer simulations and laboratory ex-
periments employing bipolar amplitude filters, phase-
only filters, and composite phase filters.

In this work we show that a good example of the new
procedure is the circular harmonic component filter in
its regular complex amplitude form and also in its
phase-only form. These filters can be used as the
basic constituents in a composite filter where the ad-
vantages of phase-only filters and complex amplitude
filters are combined. The initial goal of our research
project,! i.e., the use of reduced information content
filters is preserved together with a high degree of dis-
tortion invariance. In this paper we demonstrate ro-
tation invariance only but preliminary experiments
indicate that scale invariance can be approached with a
similar procedure.
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il. Rotation-invariant Filter Design

Our objective is to find an efficient filter, deter-
mined by a characteristic function g(x,y), that can
recognize a pattern f(x,y) in the presence of other
patterns. The recognition criterion will use the con-
ventional correlation function

Clxgye) = § fx,y)8" (x — x4,y = ¥o)dxdy. (0
and in particular its value at the origin

C(0)=J’

[2r
} f(r.8)g*(r.0)rdédr, 2)
0

0

where we converted to polar coordinates for conve-
nience in treating the subjects of rotation and scale
invariance. Defining this equation as the system re-
sponse one may also define the response for an object
rotated by an angle a,

C0:a) = J [ f(r8 + alg*(rdirdédr. (3)
0 0
Ideally one would like to keep C(0:a) constant regard-
less of the value of . However, since this requirement
is usually beyond practical limits one has to look for
various compromises. For example, the performance
of circular harmonic component filters has been inves-
tigated for completely rotation-invariant pattern rec-
ognition by Arsenault and Sheng.® A filter made fora
single circular harmonic component yields a correla-
tion

C(0:a) = K expyna), 14)
where K is a constant and n is the order of the harmon-
ic. For intensity measurements this response is quite
satisfactory.

In the present approach we turn around the argu-
ment and start by defining the required response,
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C(0;a). Considering this response as a func’gion of the
variable a it can be decomposed into a Fourier series:

C(0a) = Z ¢, exp(jna). (5)
Working in the Fourier plane it is useful to represent
the Fourier transform of the input patterns and th.e
characteristic filter functions in a circular harmonic
decomposition:

Flp) = S_ F.(p) exp(jne), (6)
Glp,¢) = z G (o) exp(jna), ™)

ne-e

where p and ¢ are the polar coordinates in the Fourier
plane. It is easy to show that the value of the correla-
tion function at the origin [Eq. (3)] can also be written
in the simple form

° 2y

C(00) = J j Flp,6 + a)G*(p,0)pdpds. )
0 J0

Comparing this with Eq. (5) and using the orthogonali-

ty of the exponentials we obtain

S c expUna) = S ] F.(p)G,(p) exp(jna)edp,  (9)
A— et 0

ne-a ne-a=

or

¢, { F.(0)G.(p)odp. (10)
0

Following the traditional way of matching a certain
circular harmonic component filter to the circular har-
monic component in the object one may do the same in
the Fourier plane by taking G.(p) = F,(p). This filter,
however, does not take into consideration the fact that
the energy content in each harmonic component is very
object dependent causing an appreciable reduction in
light efficiency and filter selectivity. To remedy this
drawback we may introduce a weighting factor into
each characteristic filter function. Also, recalling the
high efficiency and selectivity obtained with phase-
only filters*5 one is tempted to use the phase informa-
tion as the major contributor for generating the filters.
Thus we define the phase-only characteristic circular
harmonic functions,

23
F(p.¢) expyno)de
Gp) = >

T . 2, <0< py (11)
J F(0.6) expino)do
L

where p; is the size of the filter and the indistinguish-
able low frequency signal has been eliminated (i.e., G,
= 0 outside the noted region). The useful interval
depends on the pattern to be recognized and should be
chosen insuch a way that it contains the distinguishing
information.

The most convenient way to proceed is to invoke a
specific example. Previous experiments with block
letters indicated that it is most difficui. to distinguish
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Fig.1. Inputpattern for the computer experiments from which the
letter P should ke recognized.

between the letters P and F such as shown in Fig. 1.
Thus it is interesting to investigate this difficult case
with various filters made to recognize one of these
letters against the other. In a computer experiment
filters were generated to recognize the letter Pfrom the
input pattern of Fig. 1. The performance with a regu-
lar matched filter is shown in Fig. 2(a) with the auto-
correlation peak normalized to unity. It is clear that
the cross correlation with F is quite high, much higher
than the correlation with the rotated P. The autocor-
relation peak of a phase-only matched filter is 54 times
as high [Fig. 2(b)] but the cross correlation with F is
high too, again much higher than that with the rotated
P. A circular harmonic component with n = 0 pro-
duces the output pattern shown in Fig. 2(c), demon-
strating complete rotation invariance but not very
good selectivity. The improvement obtained by using
a phase-only circular harmonic component filter of the
type represented by Eq. (11) is indicated by Fig. 2(d).
Low frequency suppression for the two last experi-
ments was the same.

The experimental results shown in Fig. 2 are, respec-
tively, summarized in lines 1-4 of Table I. Ip is the
autocorrelation peak intensity normalized to 1 for the
classical matched filter while Ip/Iris the ratio between
the peak for Ptothat for F. The last column indicates
if the filter is completely rotation invariant or not.

iil. Phase Amplitude Composite Filter Generation

The good performance of the new filter is still deteri-
orated by the presence of a cross-correlation peak. To
suppress this peak one must also include in the filter
func*ion some information about the pattern to be
rejected. This can be achieved by using the concept of
the composite filter® as also implemented for the circu-
lar harmonic filters.” Figure 3 is the output pattern
obtained by using such a rotation-invariant complex
amplitude filter (see also line 5 in Table I). In princi-
ple one could use the same procedure with the new
phase filters; however, due to the rapid fluctuations of
the intensity over the output plane this is too difficult.
Thus to suppress the cross-correlation peaks one may




Fig. 2. Output distribution for (a) regular matched filter; (b) phase-only matched filter; (c) harmonic component (n = 0) filter; and (d)

harmonic component (n = 0) phase-only filter.

Tabiel. Performance Comparison for the Various Filters (See Text tor
Details); Pacameters », and »; Define the Weight of Each Component of

the Compostite Fliters

Rotation

Filter Ip = |C(0,al? Ip/lr invariant
(1) Matched filter 1 1.42 No
(2) Phase-oniy filter 54 2.8 No
(3) Circular harmonic component 0.44 1.7 Yes

filter N= 0

(4) Phase-only circular harmonic 7.5 3.5 Yes

component filter N = Q
(5) Composite filter = y\F, + ,F, 0.55 2.0 Yes
(6) Composite filter = ) F, + 1,F, 3 5.5 Yes
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Fig. 3. Output distribution with a harmonic component compcsite
filter.

use a smother characteristic function for the unwanted
patterns (F in this case) in a composite filter. One
possible choice can be the circular harmonic compo-
nent filter employed in generatin: the output of Fig.
2(c). This way we may compose a filter where we
utilize the high light efficiency of phase-only filters for
the pattern to be recognized and modify it with the
complex functions of the patterns to be rejected.
With the above considerations in mind we generate
the characteristic filter function for P according to Eq.
(11) for the n = 0 circular harmonic. For the same
circular harmonic component we generate the circular
harmonic filter for F according to the relation

2
Grip) = ] Fro.0)do, (12)
0

and combine them in a composite filter.

A scan along the diagonal of the filter is shown in Fig.
4. It turns out that for real objects, as is the situation
in our experiments, the zero-order phase-only circular
harmonic has only the values zero or = leading to a
binary, bipolar amplitude filter with values 1 and —1.
The plot in Fig. 4 represents such a filter made for P,
modified by the complex filter function prepared for
the zero-order circular harmonic of the letter F. The
output pattern for this filter is shown in Fig. 5.

The measurements performed on the outputs of Fig.
5 are summarized in line 6 of Table I. While line 5
represents the results for a filter composed of two
characteristic functions that served as filters in line 3,
the filter for line 6 is made out of a P function corre-
sponding to the filter in line 4 combined with an F
function corresponding to a filter of line 3. The im-
proved discrimination characteristic of the new com-
posite filter compared to Figs. 3 and 2(d) is evident.

IV. Laboratory Experiments

To verify the practicability of the new procedure the
computer experiments were repeated in the laborato-
ry. We employed the same IBM PC that was used in
the simulations to generate the input pattern of Fig.
6(a) and holographic filter functions like the one
shownin Fig. 6(b). To generate the filters the Fourier
plane was sampled into 64 rings of equai width and the
holograms were plotted on a regular dot printer. The
working patterns were obtained by a 25-fold photo-
graphic reduction onto a regular photograp*ic film.
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Fig. 4. Bipolar amplitude scan along one diameter of a phase am-
plitude harmonic component filter.
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Fig. 5. Output pattern for the filter of Fig. 4.

Figure 6(c) shows the output pattern for a phase-only
circular harmonic component filter (corresponding to
line 4 in Table I) superposed by a line along which the
intensity scan of Fig. 6(d) was obtained. Figures 6(e)
and (f) are the corresponding patterns for the compos-
ite filter of Fig. 4 (line 6 in the table). The correspon-
dence with the computer calculations is excellent.
Note that the correlation peaks appear at the centroids
of the recognized patterns that are shifted during rota-
tion. It is interesting that the cross correlation with
the additional letter O was also reduced with the com-
posite filter.




Conclusions

Fig.6. (a) Input pattern for laboratory experiment; (b) filter made

for recognizing F; (c) output pattern with phase-only harmonic

component filter superposed by a line along which the intensity scan

of (d) was taken; (e) output for a phase-amplitude harmonic compo-
nent composite filter of Fig. 4 with intensity scan (f).

inthe actual experiments. It is also worthwhile noting

In this work we introduced a new kind of phase-only
filter, the phase-only circular harmonic component
filter and the circular harmonic component phase am-
plitude composite filter. The selectivity and light effi-
ciency of the composite filters were improved by com-
bining the advantages of the phase-only filters with
those of the complex amplitude filters. The superior
performance of these filters was demonstrated by com-
puter simulations and laboratory experiments. We
worked with the zero-order harmonic because the let-
ter P had a very large fraction of its energy in this
harmonic. For the detection of F, for example, a high-
er harmonic is better. In any case, a set of filters for a
specific job may include many harmonic orders. How-
ever, to preserve rotation invariance, each filter shouid
contain information using the same harmonic compo-
nent of all the input patterns. The experiments de-
scribed in this paper are only a sample of those actually
performed and they represent the most problematic
cases.

The initial goal of the present research project of
employing low resolution devices was preserved and
demonstrated by using a simple dot printer for the
generation of the filters and regular photographic film

that this entire paper represents just a new example of
the general procedure outlined in Ref. 1.

This work was partially supported by contract
NO00014-86-K-0591 with the Office of Naval Research.
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Abstract

The number of interconnections in a (fully connected) backward
error propagation neural network grows quadratically with the num-
ber of neurons in the network. The memory (and time) requirements
for handling a large number of interconnections can therefore become
a serious impediment for simulations and .mplementations of neural
networks. Another problem is that the media used by most neural net-
work implementations (neural computers) have only a limited ability
to discriminate intensity levels. In order to represent neural networks
efficiently in optical implementations (optical computers) and analog
electronic implementations, the set of possible values an interconnec-
tion strength (weight) can have, should be small. To abate these prob-
lems, the possibility of discretizing the weights of neural networks is
investigated. Weight discretization will impair the performance of the
neural network. This can be compensated by increasing the number
of neurons and/or the number of hidden layers. A new discretization
method is developed and its performance is compared to others.

1 Introduction
1.1 Background and definitions

Perceptron like neural networks can be trained by teaching them pat-
terns. A pattern consists of a set of elements (pirels). Each pixel can assume




a continuous or a discrete value. In the discrete case!, the possible set of
pixel values is often limited. Typical pixel value sets, used in artificial neu-
ral networks, are: {0,1} and {—1,1}. Usually, a pattern is presented to the
neural network by feeding each of the pixels to a different input neuron, i.e.
a neuron of the first layer of the neural network. Therefore the number of
input neurons is equal to the number of pixels in the pattern.

Most artificial neural network simulations consist of two phases : a train-
ing or learning phase, and a recall or use phase. During the training phase
patterns are presented to the network. The interconnection strengths (also
called synaptic strengths or weights) of the neural network are adapted
conform these patterns by means of a neural network learning rule (as for
example the backward error propagation learning rule). If the weights are
stabilized, the network is called fully trained. During the recall phase input
patterns are presented to the neural network. Based on the fixed weights,
corresponding outputs, which are the activation values of the neurons of the
highest layer, are generated by the network. This form of neural network
training is called off-line training. Off-line training is often crucial, since it
separates the normally time consuming training from the recall process and
therefore speeds up the use of the neural network tremendously.

In ‘neural network learning rules with a teacher’, two patterns are pre-
sented to the network: an input pattern and a target pattern (the ‘teacher’)
which is the desired output for the neural network. In these networks the to-
tal output of the network has to converge towards the target pattern;i.e. the
activation values of the output neurons have to converge towards the pixel
values of the target pattern. In auto-associative learning the input patterns
are the same as the target patterns. Auto-associative learning is therefore
used to train the neural network to remember a set of patterns. One of
the main applications of auto-associative learning is image reconstruction
or recalling a pattern if only a partial or disabled input is available. For
example: a knowledge base which can handle fuzzy data.

In hetero-associative learning the input and target patterns are usually
different. Hetero-associative learning is therefore used to train the network
to associate each of the input patterns with its corresponding target pattern.
For example: association of geological information of a certain geographical
area with the presence of fossil fuels there.

'Be aware of the difference between discrete weights and discrete pixel values.




1.2' Problem definition

Since the number of interconnections in a fully interconnected back-
propagation neural network grows quadratically with the number of neurons
in the network, the storage (and time) needed for handling them is often
a problem for neural network simulations and implementations. Discrete
values (from a limited set) use less storage and can be handled more eco-
nomically than continuous values. Therefore, discretization of the weights
is investigated.

Discretization is essential for all kinds of implementations of neural net-
works, since most information media used can only discriminate a small set
of intensity levels. For example optical implementations (optical computing)
[Caulfield-88] and analog electronic implementations {Thakoor-86].

The research goals for the work presented in this paper are to develop
discretization methods for back-propagation neural networks, to create a
software environment for the simulation of neural network weight discretiza-
tion, to test the discretization methods by computer simulation, and to find
rules of thumb for expanding the neural network in order to compensate
for the loss of information capacity due to the discretization of the weights.
Before going to the discretization methods, some related work is discussed.

1.3 Prior work
1.3.1 Hopfield model

In his famous 1982 paper, Hopfield [Hopfield-82] studied a ‘clipped’
weight matrix (T;;). He replaced T;; by +1, the algebraic sign of T;;. The
purposes were to examine the necessity of a linear synapse supposition (by
making a highly nonlinear one) and to examine the efficiency of storage. He
found little performance? degradation. The number of recallable patterns
was (analytically) 2 of the number with linear T;;’s. Thus severe discretiza-
tion causes only mild degradation. To restore performance, the number of
neurons would have to be increased by 5.

In this paper, the ‘performance’ of a neural network is its ability to learn (and recall)
a certain amount of information.




1 .3.2‘ Winner-take-all-models

Stirk et al. [Stirk-87) addressed a variety of non-Hopfield models from
the viewpoint of performance sensitivity to analog optical inaccuracies. The
results for simple winner-take-all networks are bad. Furthermore “big N”
cases (N = 64) are significantly worse than “small N” (N = 16) cases.
Optics seems advantageous over electronics only for very large N, say, 10*
to 108, This means optics is accurate enough only for small N, but small N
is probably better done electronically.

1.3.3 Farhat’s adaptive method

In a paper showing how to implement large neural networks (10° - 10*
neurons), Farhat et al. [Farhat-86] reformulate the Hopfield model for two-
dimensional inputs and outputs and four-dimensional interconnects. They
clip the interconnection matrix in various ways {0,1},{-1,1},{-1,0,1},
etc. and find that with “adaptive thresholds” the {0,1} interconnection pat-
tern (easy to implement optically and electronically) can achieve the same
performance level as a multivalued interconnection pattern. In effect, they
have restored the -:- loss observed by Hopfield by using adaptive thresholds.

1.3.4 Summary of prior work

What is known from these prior studies is that some neural network
designs are far more noise prone than others and that compensatory methods
such as adding more neurons or allowing adaptive thresholds can restore the
performance of the network.

2 Discretization of back-propagation networks

2.1 Approach

Among the multi-layer neural network learning rules capable of both
auto-associative, and hetero-associative learning, the backward error prop-
agation learning rule, also known as back-propagation or error propagation




[Werbos-74] [Rumelhart-86], is the most widely used and is simple to use
[Hecﬁt-Nielsen—SS]. The back-propagation learning rule was therefore cho-
sen for the experiments. The experiments are based on the discretization
methods which are described in paragraph 2.2.

The number of neurons per layer can vary; N; indicates the number of
neurons in layer [ (1 < < L), where L is the total number of layers (or slabs)
in the network including the input and the output layer. The interconnection
weights between two layers of a neural network can be represented by a
matrix W, ;;, here ! represents the level of the matrix (1 < I < L). The
level 1 is the ordinal number of the lower one of the two layers connected by
Wiij. The indices i and j determine the ordinal number of the neuron in the
lower and upper layer respectively. The weights (Wf;.), as used in ordinary
back-propagation models, can theoretically assume any (continuous) value:

-00 < Wf"j < 00,

The used discretization methods produce discrete weights (W,f,.j). In
general there are D discretization levels, where D is a finite integral number.
Since the set of desired discretization values can be mapped on any sequence
of numbers using a bijection, any set with the same cardinal will satisfy. In
this paper the choice is made for a sequence of consecutive integers equally
divided among positive and negative numbers :

W/';‘i'.j € {n— l——-—D;-lJ l n= 1,2,...,D}.

Discretization of the weights will impair the performance of the neural
network, because there is a loss of information capacity. This is compensated
by increasing the number of neurons and/or the number of hidden layers of
the network. In other words: discretized weights contain less information
than continuous ones; this is compensated by using more of them. The used
discretization methods are discussed in the next paragraph.

2.2 Three discretization method.
2.2.1 The multiple-thresholding m. .od

The multiple-thresholding method is the simplest of the three discretiza-
tion methods used. It starts by fully training the neural network, using the




back-propagation learning rule; i.e. iterate (over steps 2 till 4 of the al-
gorithm in appendix A) until convergence® is reached. Then discretize the
continuous weights into discrete valued weights using a nonlinear function
(usually a multiple-threshold). The weight matrices so obtained are re-
ferred to as the discrete network. The original set of weight matrices with
continuous weights is called the continuous network. Chiueh and Goodman
[Chiueh-88] have applied this method using three discretization levels. They
found that about 15%-50% of the networks did not work.

2.2.2 The direct discretization method

In the direct discretization method, the neural network is initialized with
discrete weights, which have random values within the discrete range. The
forward propagation is similar to the normal back-propagation learning rule
(step 2 of the algorithm in appendix A). During the backward propagation
(step 3 of the algorithm in appendix A), the weights are updated only if the
difference in weight (AW,"’,-)-) is big enough to change the weight into one
of the other possible discrete values. This method does not work for the
standard back-propagation learning rule (see appendix B for a proof).

2.2.3 The continuous-discrete learning method (CDLM)

This new developed method, schematically shown in figure 1, starts off
with the multiple-thresholding method (paragraph 2.2.1, and (a) to (f) in
figure 1). Next the original input pattern (a) is fed (h) into the discrete
network (g). The outputs obtained by forward propagation (step 2b of
appendix A) are compared (i) with the target pattern (e) and the errors
(8’s) are back-propagated (j) through the continuous network (c). Next,
the weights of the continuous network are discretized (f) as before and the
process starts all over again until the system reaches convergence. The fully
trained discrete network (g) can now be used for the recall phase.

This approach leads to an increase in the total number of iterations

*From now on “reaching convergence” will stand for reaching of the convergence .ri-
terion (see paragraphs 1.1 and 3.1) or another limiting (normally time-based) factc., e.g.
the maximum number of iterations allowed. “Convergence” itself will stand for converging
into the desired range (¢-range), as opposed to convergence to any value.




needgd. The process can be speeded up by skipping the full training of the
continuous network, since starting with a fully trained continuous network
is convenient, but not necessary.

3 Evaluation of the discretization methods
3.1 The back-propagation model used

The experiments performed are based on the back-propagation learn-
ing rule. The characteristics of the back-propagation model used are: it
is fully connected between adjacent layers, it has no intralayer connections
i.e. connections between neurons in the same layer, and no supralayer con-
nections i.e. connections between neurons that are not in adjacent layers
[Rumelhart-86, figure 8.3]. The following assumptions are made: a nega-
tive weight is inhibitory, a zero weight means no connection and a positive
weight is excitatory. Thus, in spite of the fully connectedness (between ad-
jacent layers), the situation of two neurons without an interconnection can
be represented theoretically in this way.

The patterns used to train the network were free of noise. They are
presented to the neural network as a set of pairs of patterns. Each pair
consists of an input pattern and its corresponding target output pattern.
A pattern consists of a rectangular matrix of pixel values (height x width)
which is mapped onto the one dimensional set of input neurons (the neurons
in layer one). Let h' be the height of the input patterns and w* the width (i
stands for input). The pixel value of input pattern j (pjmn) is mapped on
input neuron (m — 1)w' 4 n, where m indicates the row of the pixel in the
pattern (1 < m < ') and n the column (1 < n < w'). The patterns in the
set, which are presented in the order they are provided by the user, are fed
repeatedly into the input neurons of the neural network until convergence is
reached. The convergence criterion used is: when all the activation values
of the output neurons reach their e-range. An e-range is the range near a
desired output, determined by the deviation parameter (¢). The deviation
parameter is the maximum amount that an output activation value may
deviate from the target pattern value.




3.2 'Implementation
3.2.1 Software specification

In order to perform the discretization experiments with all the necessary
flexibility, a portable (machine independent) back-propagation software en-
vironment was developed by the author using the PASCAL programming
language [Jensen-78]. The main part of the software has been developed on
a personal computer. When some of the experiments took more than 24
hours to run on the personal computer, changing over to a Cray X-MP/24
supercomputer seemed a good idea.

Some of the flexibility criteria for the software environment were : the
capability of handling both auto-associative and hetero-associative learning,
changing the pattern size (height and width), the number of patterns, the
learning rate (7), the number of layers, the number of neurons per layer (for
each hidden layer), the number of discretization levels, the deviation param-
eter, and the maximum number of iterations for the (continuous-discrete)
learning method, also the ability of choosing a discretization method, an
initialization scheme for the weights, and a pixel value set.

The most important outputs of the simulation system (for both the con-
tinuous and the discrete network) are:

e the stop criterion : whether the desired output is reached (within the
e-range) or the number of iterations reached its maximum

o the output values (activation values of the output neurons) after each
iteration, if desired

o the number of iterations made

¢ the number of errors made (output activation values that reached un-
desired values)

¢ the number of output neurons that did not reach the desired output
(within the e-range)

¢ the maximum deviation (between actual output activation value and
the desired output value)

The user can choose which outputs are desired for specific experiments.




3.2,2 Methodology

The most promising discretization method is the CDLM, because the di-
rect discretization method does not work, and the CDLM easily outperforms
the multiple-thresholding method because the first includes and improves
the second method.

Two approaches were taken to test both the CDLM and the multi-
threshold method. First a systematical ‘search’ through the state space of
possible experiments. The starting position was the smallest network possi-
ble and using two discretization levels, since this is the preferred number for
most neural network implementations. The next variable to vary is there-
fore the pattern size which is the same as the input size. Then both auto-
and hetero-associative learning were tested. The number of patterns was
the next variable to vary. This meant starting off with a two layer system,
which would be enlarged in further experiments. The number of possible
experiments was growing exponentially, a second approach was taken.

Here, the collection of patterns was fixed. This means a fixed number of
patterns, a fixed pattern size, a fixed number of input and output neurons
and, in this case, a choice was made for hetero-associative learning. The
central parameter in this approach is the number of discretization levels.

3.2.3 Parameter definition

This paragraph discusses the parameters which were kept constant in
most of the experiments. For perfect recall (i.e. output activation values
are within their e-range), using noise free inputs, it turned out that the
higher the learning rate the faster the convergence. Besides dedicated ex-
periments, the value of the learning rate (n) was kept at 0.5 [Caudill-88].
The value used for the deviation parameter (¢) is 0.05. Random values in
the range [-0.1,0.1] were used to initialize the weights. The pixel value set
used is {—1,1}. For the nonlinear function required in both the multiple-
thresholding method and the CDLM, a multiple threshold with rounding
off to the nearest pixel value was used. A typical figure for the maxi-
mum number of iterations is 20,000. The local thresholds (©’s) or biases
{Rumelhart-86, p331-] were kept zero.

In the second approach a number of variables were fixed in order to limit
the state space. These experiments used hetero-associative learning, three
by five pixel patterns, a learning rate of 0.5, and two to four layers.
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3.3 Results

“Being able to learn and perfectly recall (associate) a set of noise free
patterns” is taken as a measure for comparing the performances of contin-
uous and discrete networks.

What could be expected intuitively, is confirmed by the experiments: the
performance of the CDLM is better than the performance of the muitiple-
threshold method. The outputs of the multiple-thresholding method were
often outside the e-range. Sometimes, wrong results were obtained when
rounding! was applied to the outputs. In general rounding can be used to
obtain a {0,1}-result from an output neuron that did not converge into the
€-range.

The CDLM on the other hand usually achieves much better results. The
first approach (see paragraph 3.2.2) emphasized the performance restoration
of the neural network using the minimum number of discretization levels,
which is two. In the case of associating one set of two patterns by the
simplest network of one input neuron, one output neuron and a variable
number of hidden layers and neurons in them, a two level discretization
works very well (see figure 2). The two layer network does not converge to
a value within the e-range but gives the right answer after rounding. The
performance of a three layer system with one neuron in the hidden layer
is worse than the two-layered network. But adding neurons to the hidden
layer increases the performance. With five neurons in the hidden layer the
e-range of 0.05 is reached. In figure 3 the situation for four layers is depicted.
In order to reach ¢-accuracy, the minimum number of neurons needed in the
hidden layers is (5&3), (2&4), and (1&5) neurons in the second & third layer.
If two patterns are stored, the graph (see figure 4) is less smooth but the same
behavior can be observed. Fourteen hidden neurons are needed in the second
layer to reach e-accuracy. Note that for the three layered network with one
or two neurons in the hidden layer faulty results are produced when rounding
is used. In order to reach the right outputs after applying rounding in the
case of four layers, the minimal number of units needed in the hidden layers
is (2&9), (3&6), (4&5), (5&4), (6&4), (7&4), (8&3), and (9&4) neurons in
the second & third layer. However, rounding gives sometimes wrong results
for some hidden layer sizes larger than these minima. The number of extra
neurons needed to restore the performance is relatively high. Other results
showed that this relative overhead became smaller for bigger networks.

‘From now on, “rounding” denotes rounding off to the nearest pixel value.
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In some of the smaller networks the activation values of the output neu-
rons remained constant during the discrete training. In these cases the per-
formances of the multiple-thresholding method and the CDLM are equal.

The emphasize of the second approach is on comparing results using
different numbers of discretization levels. The pattern set consists of nine
pairs of character-like patterns. The continuous network could perfectly
associate them all after 372 iterations.

T # discr. levels | # iterations | # non-converg. | max. abberation |

2 10000 67 0.88
3 10000 18 0.50
5 10000 2 0.12
7 69 0 0.00
9 47 0 0.00

This table shows that if the number of discretization levels increases, the
number of non-converging outputs decreased. A perfect recall was obtained
at seven discretization levels. Further increase leads to a decrease in the
number of iterations needed for a perfect recall. This observation can also
be made for the continuous network: adding neurons to the network leads
to a faster convergence for the continuous network (less iterations needed).

Sometimes the performance of the network reached a maximum, without
reaching total convergence. In order to compensate for this, the observed
maximum performance is stored and used as final resuit.

If the CDLM starts with a full training of the continuous network, the
number of iterations needed for training the discrete network varies from one
to a number of iterations comparable to the number of iterations needed for
the training of the continuous network. In this case, the total number of
iterations needed for the CDLM is therefore one to two times that of the
continuous network.

In general: addition of a new layer to the network, without increas-
ing the total number of neurons in the network, results in a performance
degradation. This can be explained by looking at the total number of inter-
connections before and after the addition of a new layer. If a fully connected
two-layered network contains N) neurons in its input layer, and Ny in its
output-layer, the total number of weights is Ny - Np. The number of neu-
rons needed in an additional (=hidden) layer to have the same number of

connections is %
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4 Conclusions and future work

Of the three discretization methods proposed, the CDLM works better
than the multiple-thresholding method, and the direct discretization method
is unusable. A portable neural network software environment has been cre-
ated for performing the discretization experiments. As intuitively expected,
the lower the discretization (more discretization levels), the better the per-
formance of the neural network. But, using two discretization levels, as
desired by optical and electronic implementations, give reasonable results.
The results of a two layer neural network are usually good enough when
using the CDLM.

If the CDLM starts with a fully trained continuous network, the number
of iterations will be one tc . times that of the number needed for the full
training of the continuous network.

Future work will consist of the search for other discretization methods.
Also doing more experiments, which might bring better rules of thumb for
restoring the performance of the neural network. Furthermore analytical
analyzing of the discretization methods will be explored. Another goal is
speeding up the simulation software by optimization and vectorization of
the program code. Finally, since most of the data is multidimensional, data
visualization techniques are being designed for representing the data.
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APPENDIX A

Back(ward Error) Propagation; the formulas

In this appendix, a;; represents the activation value of the neuron i in layer
I of the neural network, and t; is the target pattern value which corresponds
to neuron j in the output layer.

Back-propagation consists of the following steps :
(1) Initialize the weights ( W(.; ) and offsets ( ©y; ).
(2a) @y, := input to the i-th neuron of the input layer.

(2b) Torward propagation :

= o 1 for 2<1<L
14 e'(Za.F Wf_x,.', U_1,i = Oy )
(3) Backward propagation :
AW/ = b4 a
where
(tj = ar3)a1;(1 - ar) f1=L-1
6l.j =

a1 (1 = @l G )T b42uWiyy ) I 1<I< D=1
next, add AWI‘-:,)! to ch'J‘
(4) IF no(t enough) convergence THEN GOTO (2a)
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APPENDIX B

Proof of ‘direct discretization method’ limitations

The weight update formula for the highest level interconnection matrix (see
step 3 of appendix A) is equivalent to:

lAWi‘,-x,jel = |(t; = aL-14)3L-1,(1 — aL-15)aL,l

since0<ar;<land0<n<1:

IAWE'_x,,-.'I <t - ar-1)ap-1,5(1 = ap-1 )|

Partial differentiation of this function shows that it has no local extremum
in the open interval (0,1) x (0, 1) of the plane spanned by ar_1; x t;. The
maximum of this function will therefore be a boundary extremum of this
interval. Since the function equals zero for both ar_;; =0 and ag—1; =1,
two cases are left to be examined:

case 1: ;=0

d -
|AWL-1,ji| < I—ai-l.j(l - “L-l.j)l = ai-l\j(l - aL-1,)

dawp_, il

T = ar-14(2 - 3ap-1,5)

az-1; =0 minimum

d J

dlAwL-l,liI - 0 —
L1, .

ar-15 = 2 maximum

maz
-~ 2

maximum for ay1; = § = IAW}f_u‘ < 3%

14
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case 2: t;=1

|aWE_ | < ler-15(1 = 8L-15)*] = apor (1 = agors)?

daws_, il

76—1‘—_1—';1— = (3aL-1'j - 1)(GL-1,j - 1)

(2

daws_, | ar—1j maximum

L=1.gdl __
GL-I‘J - 0 - . .
az-1; =1 minimum

. 1 d maz
maximum for ag_j; =35 = IAWL_1

4
i <3

Both cases give the same result :

lawi_ ;| < & =018

This is the maximum weight increase possible. So, when using less than
[%Z'l = 4 discretization levels, the weights will never be updated. Since
the average weight update is much smaller than this maximum, the direct
discretization method is not usable for standard back-propagation neural
networks. :
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Abstract

One of the most fundamental properties of a neural network is its
(storage) capacity. It determines the practical usefulness as well as the
(storage) limitations of the neural network. So far, the capacity of neural
networks has mainly been studied for specific learning rules only.

This paper presents some theoretical upperbounds on the (storage)
capacity of neural networks. These generally applicable upperbounds are
topology independent and learning rule independent. The problem of ca-
pacity is approached from different points of view. An overall upperbound
based on combinatorics, and a tighter upperbound from information theo-
retical point of view, are given. Also inciuded is an upperbound for linear
neural networks (or discriminants).

For general reference an extensive bibliography on the subject of neural
network capacity is appended.

Keywords

(artificial) neural networks, connectionism, neural network capacity, neural
network statics, neural network connectivity

INTRODUCTION

Much discussion is taking place about the usefulness of (artificial) neural
networks. The viability of their use depends to some extent on their limitations.
One of the most fundamental limitations is the (storage) capacity of neural net-
works. One wants to be able to store and process as much information in a
neural network as possibie. The capacity issue has many impacts on fundamen-
tal and applied research on neural networks; cf. (DARPA-88). It is essential for
the work on connectivity and optimal topologies of neural networks (Fiesler-90).

Since the information presented to neural networks can be represented as
patterns, it is useful to examine the pattern capacity of a neural network. The
pattern-capacity (C) of a neural network is the number of different patterns that




can be stored in that neural network, where a pattern consists of a set of values
called pizels, and a pixel can assume any value from a (finite or infinite) set,
called pizel value sel. A pattern is said to be stored in a neural network if it can
be retrieved (within certain exactness limits) as an output from the network by
feeding the corresponding input into the network. In this paper, exact recall of
the patterns is assumed, this means that no errors are allowed in the (possible)
recall of a pattern.

Neural networks are characterized by their architecture (including their to-
pology) and their learning rules. Up till now, neural network capacity research
has been oriented towards neural netwcrks with a specific learning rule (cf.
the appended biography on capacity). In order to get an approximation of
the capacity of an arbitrary neural network, the concepts which are general
to neural networks have to be explored. To remain independent of topology
and learning rule, one has to restrict considerations to static entities like the
number of neurons in the network (/V), the number of weights (W), and in case
of discrete neural networks: the number of discretization levels for the weights
(D), and the pizel value set cardinalily (d), which is the number of different
(input) values possible for a pattern pixel. A discrete neural network is defined
as a neural network with discrete interconnection strengths (weights). This work
is based on discrete neural networks, since all (computer) implementations of
theoretically continuous neural networks have a finite precision they can be seen
as discrete ones. For example in a computer simulation of a continuous neural
network with b bit number representation, the number of discretization levels,
and the pixel value set cardinality, can maximally be 2°. An introduction to
discrete neural networks and related definitions are described in (Fiesler-88).

AN UPPER UPPERBOUND

Every weight in a neural network can assume D different values, and there
are W weights in the network. Therefore, using plain combinatorics, the number
of different patterns that can be represented (this is the number of different
distinguishable states) in a neural network is

D¥.

An input pattern is copied into the activation values of the input neurons. There
are N, input neurons and each can assume one of the d different possible values.
The number of different input patterns that can be presented to a layered neural

network is
ah,

In order to store information in a neural network, it has to flow through the
input neurons. Hence, the smallest value of the two equations given above,
will be the information bottleneck for the network. The upperbound for the




pattern-capacity is therefore
Minimum (¢, DW).

Although, since for multi-layered neural networks Ny < W, for most networks:
d < D¥ and in this case the upperbound will be d":.

A TIGHTER UPPERBOUND

This number, which is a theoretical capacity upperbound, can be lowered
if information-capacities are considered. Information theory defines the total
amount of information, or entropy, of a system to be 3 i, pilogp;}, where p;
is the probability of occurrence of state i of the network, 1 < i < n. (The nota-
tion "log” stands for any base logarithm; a convenient choice is base D.) The
maximum amount of information is obtained when all p;’s are equal (Hamming-
80); i.e. p; = n~!, and the total information is logn. An upperbound for the
information-capacity of a neural network is therefore

log DY = Wlog D.
Analogous, the information-capacity of an input pattern is
logd™t = N logd.

If the number of patterns to be stored is C, the total input to the network is
then

CNy lOg d.
If we let C be the pattern-capacity of the neural network, this quantity has
to be equal to the total information in the neural network. Therefore, if we
combine both formulas, we get an upperbound for the pattern-capacity of a
neural network of

Wlog D

Nylogd’
This resuits, applied to fully interlayer connected neural networks gives, for a
two layer network (L=2 and W =N N,):

NalogD

Cs logd

and for an auto-associative neural network (N, = Np) which has three layers
(L=3 and W=N, (N14N3)):

2Nalog D

(W
“< logd

where the pattern-capacity is directly proportional to the number of neurons in
the hidden layer, since D and d are constants.




UPPERBQUNDS FOR LINEAR NEURAL NETWORKS

Linear problems are well understood mathematically (Pao-89). The non-
linearity of neural networks is what makes them hard. So in order to get a grip on
the upperbound of the capacity of neural networks, the non-linearity is stripped
for a morment and linear neural networks (with interlayer connections only) are
observed. A two layer linear neural network with only interlayer connections
is known as a (linear) discriminant. Observe a simple linear neural network,

where
Niay

ar; = Z Whiijai-1, for1 <j<N,
=1

in which a;; represents the activation value of neuron i in layer {. For the
input layer ({=1), this value is equal to the pixel value for the corresponding
input neuron of the network. For a two layer system the system consists of
N, equations. In these equations the interconnection weights are the variables.
In a fully interlayer connected neural network there are W = NN, weights,
and therefore Ny N, degrees of freedom (independent variables), which means
that the system of linear equations is completely determined by giving N,V
variables a value.

When a pattern is presented to the two layer network, the activation values
are known and this gives N2 equations in N{/N; unknowns. The number of
degrees of freedom of a system of E linear independent equations in ' unknowns

is
Maximum(U - E,0)

So in the previous case, the number of degrees of freedom is Ny Ny — Ny =
N, (N = 1). Each new pattern, which has at least some component orthogonal
to the other patterns, gives a new set of N, equations in the same variables.
Thus after P patterns, NyN; —~ PN, = N,(N; — P) degrees of freedom are
left over. A system of linear independent equations is solved when there are
no degrees of freedom left. This happens when P = N;. So an upperbound
for the pattern-capacity of a two layer neural network when considering linearly
independent patterns to be stored completely (error-free) is: Ny.

If we extend this to more layers and assume the activation values to be
known, we have to incorporate the other layers as well and get as an upperbound
for the pattern-capacity for a multi layer linear neural network:

L=}
C<Y N=N-Ng.
i=1




SUMMARY

In this papei a number of analytically derived upperbounds on the (stor-
age) capacity of neural networks are presented. They are independent of the
network topology and the learning rule used. [t is shown that the maximum
amount of information that can be stored in an arbitrary neural network is nor-
mally limited by the number of input states, which is exponential in the number
of input neurons.

For an exact recall, the capaclty upperbound can be ‘compressed’ to an
amount which is proportional to V-, the total number of weights divided by
the number of input neurons of the network. For layered neural networks, with
up to three layers, the upperbound becomes linear in N3, the size of the second
layer.

An upperbound for the number of partially orthogonal patterns that can
be stored in a linear neural network is proportional to N, the total number of
neurons in the network.
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Abstract

One of the main problems in current (artificial) neural network engineering is
the lack of design rules for neural networks, i.e. how many layers and how many
neurons per layer to choose for a fully connected layered neural network with
bidirectional weights. A theory is developed which optimizes the topology of the
neural network to allow a maximum potential storage capacity with a minimum
amount of neurons.

Keywords: (artificial) neural networks, connectionism, neural network topology, neu-
ral network statics, neural network connectivity, neural network capacity

Introduction

Although the field of artificial neural networks, hereafter called neural networks, is

a rapidly growing one, some basic questions remain unanswered. One of the most im- .

portant problems is how to configure a neural network. Many neural network learning
rules apply to (fully connected) layered (first order) neural networks with bidirectional
weights (or interconnection strengths). A bidirectional connection is a connection that
has the same connection strength when used for either forward or backward propaga-
tion. (If a neural network uses only unidirectional propagation, the interconnection
topology of the neural network is identical to one with unidirectional connections.)

For layered neural networks in general, one needs to determine the number of layers
and the number of neurons per layer. Since neural networks are used for processing
and storage of information, the ‘optimal’ topology for a neural network is usually one
which allows an optimal (information) storage capacity. Since the interconnection
strengths (weights) contain the information of the neural network, the information
capacity is proportional to the total number of weights in the network [1]. A fully
connected neural network will therefore have a higher information capacity than any
other interconnection scheme. However, in layered neural networks there are several
types of connections.




Counting Weights

In layered neural networks one can discriminate three classes of connections:
Definition : An interlayer connection is a connection between neurons in adjacent layers
of the neural network.

Definition : An tntralayer connection is a connection between neurons of the same layer
of the neural network.

Definition : A supralayer connection is a connection between neurons that are neither
in adjacent layers, nor in the same layer of the neural network.

A sub-class of intralayer connections are self-connections:

Definition : A self-connection is a connection which originates and terminates at the
same neuron.

A neural network can have all possible connections:

Definition : A plenary neural network is a neural network which has all possible in-
terlayer, intralayer, and supralayer connections; in other words it is a ‘truly’ fully
connected neural network.

The total number of weights (W) for a neural network with L layers, which has only
interlayer connections (i.e. they have neither intralayer nor supralayer connections) is
the sum of all possible connections {between each pair of adjacent layers) in the net-
work. The number of connections between two adjacent layers in a fully inferconnected
network is equal to the product of the number of neurons in each of the layers. In order
to get the total number of weights for the complete network, a summation is needed

over the layers:
L L
W=Zm =ZNI—I N’)
=2 1=2

where W, stands for the number of weights between layer [—1 and [, and N; is the
number of neurons in layer [. Layer 1 is the input layer and N, the number of input
neurons.

In the case that the neural network has both interlayer and intralayer connections,
a number equal to the number of possible connections within a layer has to be added
for each layer. The total number of connections becomes thus:

L N L N,
N_ N+ }— (N 1D+ — (N 1) =
2111[2(1 )];2(1 )

L
Nl IV{:EI
[7(N1i1)+]§1v, (N,-1+ > )

where the part between square brackets is optional; it is deleted when no intralayer
connections are present in the input layer. The £-symbol denotes the option for having
self-connections. If self-connections are present, addition has to be used, and substrac-
tion otherwise.




The number of weights in a network which, besides interlayer connections also has
supralayer connections can be calculated by summing over all the neurons in all the
layers, multiplied by the number of neurons in all the layers of a higher index:

L L L-1m
D N1 ) Nm=3_ > NiNmir.
I=2 m=l m=1i=1

When combining the previous two formulas, the total number of neurons is obtained
for a plenary neural network, which has all three types of connections:

L L
W= [%’(Nl il)+] Z (%(Nz:l: 1)+ Ny ZNm)
1=2 m=l

where the part in square brackets is again optional and used when intralayer connections
are desired in the input layer. In the case that the intralayer connections in the input
layer are also present, the formula becomes equal to

z—(Nzi1)+ZN1 1ZN

= m=l

Since a plenary network can be represented as a fully connected graph, the previous
equation is equal to:

W:%(N:tl),

(this is the number of edges in a fully connected undirected graph with N vertices);
where N is the total number of neurons in the network: N = Z,‘;l N

Optimal topologies

Depending on the type(s) of interconnections present, the capacity of a neural
network can be optimized by varying the topology of the network. Plenary neural
networks are a trivial case; there topology is always optimal, since they can be seen
as a fully connected (undirected) graph, whose number of edges only depends on the
number of vertices.

For layered neural networks with only interlayer connections (the most used topolo-
gies), the configuration topology does make a difference. Let the total number of
weights W = Z{;z Ni_1 N;, as defined before. For a two layer neural network L =
2, W=N;N,, and N = N1+ N,. The total number of weights, W can be represented
as a function of N: W(N) = N1N;. Using N = Ny + N2, W can be transformed into
a function of N1: W(Ny) = Ni(N—Ni). To find the optimal topology, the derivative
of W(N,) with respect to N, has to be determined: %’Y—‘l = N - 2N;. A maximum
is found and this gives the optimum:

N? N
W—TatNl 1\/2—2




Since the number of neurons and the number of weights are integral numbers, W =

l%—’-J and N, can be choosen | & | or [4].

The three layer system L =3 and W = N,(N; + N3) gives analogously: W (N, N,) =
W(Nz,Na) = N2(N - Nz) or W(Nl,Ns) = N;(N - Ny — 2N3) + N3(N - N3). Max-
imization gives a maximum at N, = % and N3 = % — Ni. The maximum for W is
again [NTZJ

For more than three layers, the outcome of the maximization procedure is: drop
all but two or three layers, and the same maximum holds; in other words multi-layer
systems (> 3) layers are not optimal. This outcome coincides with the neural network
interpretation of Kolmogorov’'s theorem, which states that the capabilities of a neural
network with more than three layers does not exceed the capabilities of a three layer
neural network with 2N; +1 neurons in the hidden layer and only interlayer connections
[2].

For neural networks with interlayer plus intralayer connections, a fully connected
two layer network is equal to a two layer plenary neural network. It has W =
W+ M)t No¥L) - N(N 4 1) weights. So there is no absolute maximum; any distri-
bution of the neurons over the two layers gives this "maximum”. For more than two
layers the outcome of the optimization is: drop all but one or two layers and distribute
the neurons over these layers. The maximum W is therefore the same as for the plenary
neura! network.

Layered neural networks with interlayer and supralayer connections have a different
optimum: Since two layer neural networks do not have supralayer connections, the
smallest networks to study here are three layer networks: L =3 and W = N\ N, +
NiN3 + NaN3. W can be written as a function of two variables again: W (N, Np) =
Nl(N - Ny - Nz) + No(N - Nz), W(NI,N3) = N3(N - N; - Na) + Ny (N - Ny), or
W (N2,N3) = No(N — N2 — N3) + N3(N — N3). Maximization gives a maximum at
Ni=Ny=Na= % The maximum for W is %: This can be generalized and proven
for any number of layers. The maximum is found at N, = %—, forL>2and 1 <I<L,
and the maximum is

_NL-1)

T

Thus in the case of both interlayer and superlayer connections: Since the number of
neurons is a positive integer, each layer gets at least I_%J neurons, and the rest of the
neurons (N — L | #]) can be distributed over the layers. The number of weights is also
a positive integer. The floor function can only be applied for neural networks with less
than eight layers, since the maximum deviation between the optimal and the actual
number of weights can be as large as % ‘weights’.

w




Conclusions

The optimal topology and maximum number of connections for all the interconnec-
tion schemes are given in this table:

interconnection optimal topology
structure Lmin Laz Ni’s Wmnaz
« _ N N2
inter 2 3 Ny =5 =
inter & intra 1 2 any distribution ﬂ:’l’ziil
. . _ N N3(L-1
inter & supra 3 no max. Vi:Ny=T Jﬂ—l
plenary 1 no max. | any distribution ﬂ%’—ll
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The unlimited operating rate of parallel processing sys-
tems as suggested by various proposed architectures is ques-
tionable. Like the limitations imposed by the Von Neuman
bottleneck on serial processing it appears that we also have a
fundamental limitation on the possible ultimate speed of
parallel processors.

Accepting the fact that the universal speed limit is the
velocity of light, we may estimate the time for performing a
single processing step on a planar array of n X n signal
elements. The two planes P, and P, in Fig. 1 represent
optical elements (transparencies, lenses, holograms, spatial
light modulators, acoustooptic cells, etc.). To perform any
processing operation light must be propagated between
these two planes to interconnect all the signal elements of
one plane with those of the second plane. These intercon-
nections may be achieved by waveguides or, globally, by
diffraction. In any case the processing time will be limited
by the transit time of light between these two planes. Fur-
thermore, there will also be a skew-—a differential time delay
between the various interconnection paths (for example,
paths 1 and 2 in the figure).

To estimate the time delays involved in the processing we
consider free space propagation, denote the distance be-
tween the two planes by R, and denote the operating aperture
diameter by D. Assuming diffraction-limited resolution,
the diameter of each signal element (pixel) may be given by
the diffraction-limited spot size,

a = 2.44AR/D = 2.44A(f/No.), (1)

where (f/No.) is the f/number of the optical system and X\ is
the illuminating wavelength. Thus for our n X n array we
shall need an aperture size,

D = na = 2.44n)(f/No.). (2)

The maximum delay time is induced on a diagonal trajectory,

T,

ax T l (Rz + D2)1/2‘ (3)
[

where ¢ is the velocity of light, while the minimal time is

T, = Rlc. )

These two time delays may be expressed by the f/No. using
Eqs. (1) and (2):

Tonas ® zﬁ n(f/No.)[1 + (f/No.)3"?, (5

T = 27 n(f/No.)", 6)

)
O

N

- P >

Fig. 1. General building block of an optical system: two planes

with separation R and effective aperture D interconnected by propa-

gating light. The two rays represent maximal and minimal path
length in a diffractive interconnection.

where v is the frequency of the illuminating light. From the
last two equations one may also derive the skew:
t=T

max min

= Ton = Z'#n(f/No.)lI[I +(f/Noa ' 2= (D
To get an idea about the magnitude of these time delays let
us assume visible illumination with a frequency of 5 X 104
Hz,an f/No. of 2, and an array of the order of a TV frame with
n = 500. Substitution of these numbers results in T, = 10
psandt = 1.2 ps. Inan actual system involving a number of
processing planes and possibly waveguides, these numbers
may have to be multiplied by an appreciable factor. For
example, a simple optical correlator (4f system) has a factor
of 4 leading to a differential delay of 4.8 ps with a total delay
of 40 ps.

The above time delays are quite small compared to current
processing facilities and presently available device respons-
es. However, considering proposed operation with femtose-
cond pulses these delays may become the ultimate limiting
factors. The overall time delay must not concern pipelined
systems but it may become quite important in complex ar-
chitectures such as those involving teedback loop operations.
Equation (7) indicates that the overall time delay increases
with increasing f/No. while the skew approaches the limit
1.22n/v. Thus these effects should be taken into consider-
ation for very high speed architectures. For example. by
using optical fibers or other guiding elements one may solve
the skew probiem but by doing this the pipelining delays will
be increased.

In conclusion, we note that the limiting time factors were
estimated for thin optical elements in free space. The fact
that the vacuum velocity of light is a universal speed limit
may indicate that we are dealing here with a universal bottle-
neck influencing all possible approaches to parallel signal
processing. This bottleneck is proportional to the operating
wavelength suggesting that computing with visible or IR
light may be just an intermediary step toward an even more
advanced approach.

The author is pleased to thank J. F. Walkup for reading the
manuscript and making some useful comments.
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I. ORJECTIVE

The cbjective of this research is to advance the performance
characteristics and applications of campact integrated acousto-optic and
acousto-electro~optic Bragg modulator modules. The following specific
research task were proposed and pursued:

1. Analysis on Acousto-optic Bragg Diffraction in Channel-Planar
Waveguide

2. Identification of Existing and New Architectures and Algorithms

3. Camparison between Acousto-optic and Electro-optic Modulation/
Multiplication Schemes

During the course of this research significant progress was made in each
task.

II. ACCCOMPLISHMENTS
A summary of accomplishments on each task now follows:

1. i ic Diffraction -pP1 Wavi e/

Fig. 1 shows the configuration of the integrated acousto-optic (A0)
Bragg modulator module(l] that has been analyzed. An array of light beams
caupled into the channel-waveguide array at the input endface of the
LiNbO; channel-planar camposite waveguide are expanded and collimated by
the titanium-indiffused proton-exchanged (TIPE) waveguide lens array(2]
before incidence upon the surface acoustic waves (SAW) generated by the
interdigital SAW transducer. The array of Bragg-diffracted light beams
are then collected and focused upon the output endface of the camposite
waveguide by the large-aperture TIPE lens. By varying the carrier
frequency of the rf driving signal the Bragg-diffracted light beams are
scanned along the output endface.

At the outset a potential distinction between the A0 interaction
geametry under consideration and the conventional one that involves a
single SAW and a single light beam in a purely planar waveguide




substrate{3] was identified. This potential distinction was based on the
fact that optical anisotropy and the very small aperture of the multiple
incident light beams (for example, 5 to 10um) and thus the resulting
spreading of the light beams (by diffraction) will significantly affect
the performance characteristics of the device module. However, a
subsequent numerical calculation shows that to a good approximation the
spreading angle can be determined using a conventicnal formula and since
the microlens array is placed at a short distance from the output edges of
the channel-waveguide array, no significant effect through optical
anisotropy has been concluded. Accordingly, it has been concluded that -
the ultimate performance characteristics of the integrated A0 Bragy
modulator module such as diffraction efficiency, rf bandwidth, rf drive
power, nonlinearity, and dynamic range are practically identical to that
of a conventional A0 Bragg modulator in a planar waveguide(3].

2. Identification Of Existing And New Architectures And Algorithms

The integrated A0 Bragg modulator module of Fig. 1 was found to be’
rather inconvenient and limited in applications such as matrix-vector and
matrix-matrix multiplications as one set of input data must be used co
modulate the input light beams. This is so because laser arrays (such ~s
diode laser arrays) with capability for independent modulation of each
individual laser are not commercially available. Consequently, much
efforts were made to identify and explore cther new architectures.

The two device architectures that have been identified and explored
are shown in Figs. 2 and 3. The basic architecture cammon to both modules
is a canposite waveguide in which a channel-waveguide array, a planar
waveguide, a linear TIFE microlens array, Bragg modulator arrays, and a
large-aperture TIFE lens are integrated in a cammon LiNbO, substrate.

The channel waveguide array (only four elements are shown) is aligned wth
the linear microlens array. The two device modules presented in this
report utilizes, respectively, a herringbone Bragg electrode array (Fig.2)
and a SAW transducer and conventional Bragg electrode array combination
(Fig. 3). The microlens array was used to capture, expand, and collimate
the miltiple light beams from the channel-waveguide array before their
incidence upon the resulting electro-optic (BEO) and AO-EO Bragg




diffraction gratings, while the large-aperture lens collects ard focuses
the multiple Bragg-diffracted light beams upon a photodetector. In
operation, "multiplication" of data is carried out by the Bragg
modulators, while "addition" of the resulting products by the
large-aperture integrating lens.

Since this particular program had not provided any funds for
fabrication and testing of the two device modules, actual design,
fabrication amd testing were subsequently carried cut through other
programs. Same of the experimental results have been published[4,5].

In summary, the two device architectures identified and explored have
been shown to be capable of realization of high-packing density
multichannel integrated optic modules with applications to data processing
and camputing including programmable correlation of binary sequences(6].

3. Camparison Between Acousto-optic And Electro-optic Modulation/
tiplication Schemes

A. Acousto-optic Modulation/Maltiplication Scheme

Efficient and wideband A0 Bragg diffraction by the SAW was
achieved in the integrated A0-EO modules. In contrast to their FO
counterparts these integrated AO modules have the unique capability to
input the data in a pipeline fasion via the SAW. Since the number of
operations per second increases with the mumber of input light beams it is
desirable to design and fabricate large arrays of channel waveguides and
microlenses with as small an aperture as possible. Using 60 ym as the
aperture of the linear microlens array the possibl.: mumber of the light
channels will be as large as 333 for a SAW propagating path of 2.0 cm.
Since the velocity of a Z-propagating SAW in Y-cut LiNbO, is 3.5x10°
can/sec the correspording flow rate for the data is approximately 60 MHz.
Naturally, if the aperture of each microlens element is reduced to 30 um
both the mmber of light channels and the data flow rate will be increased
by a factor of two. A specific application of the IO module to optical
systolic array processing and camputing(7], namely, matrix-vector
multiplication was successfully carried out.




B. Electro—optic Modulation/Multiplication Scheme

As shown in Fig. 2, the integrated BO Bragg modulator module
results by replacing the SAW-generated A0 diffraction grating with an
array of EO Bragg diffraction gratings that were created by applying
voltages across an array of interdigital finger electrodes. Efficient and
wideband Bragg diffraction have been achieved using the electrode arrays
with 13 um periodicity and 2.0 mm aperture. Specifically, 95% diffraction
at a drive voltage of 6.0 volt and 870 MHz rf bandwidth were measured(4].
It is important to note that the two separate electrode arrays of the
Herringbone type facilitate application and thus multiplication of two
independent sets of data. Thus, in contrast to their A0 counterparts,
these integrated BO modules can accept multiple sets of data as well as at
a much higher rate than is possible with the SAW. This capability has
been utilized to perform matrix-matrix multiplication(é].
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1. INTRODUCTION

It is generally agreed that in the realin of computational linear algebra, particularly
the multiplication of two matrices, optical computing has an inherent speed of execution
advantage over digital electronics (but sce Section 4). Investigators in optical computing,
have generally taken matrix multiplication algorithms directly from the mathematical liter-
ature and modified them for use in optical computing, some representative papers are [1—4].
Alternately optical architectures have becn developed to carry out such computations, e.g.

[5-11].

One purpose of the present communication is to describe our polynomial convolution
algorithm which is an ab snitio development of matrix multiplication for use in optical com-
puting. A second purpose is to consider the situation where the matrices areiloarge that
they cannot be stored ssmultaneously on optical masks (hereafter termed the storage prob-
lem). As we will show in Section 4, the speed advantage of the methods advocated in [1-4]
are compromised because the matrix elements are not equally accessible. Furthermore, we
make plausible that the polynomial convolution algorithm is robust with respect to this
debilitating situation in that it is still possible to obtain a reasonable concurrency over the

more classical algorithms because of the simplified bookkeeping and modular structure of

the convolution algorithm.




2. POLYNOMIAL CONVOLUTION ALGORITHM

In view of the initial complexity of the algorithm we proceed in three stages. In the
first stage we give the explicit expressions and verify these formulae in the second stage.

Finally, we outline a construction which leads to the various formulas.

We begin by considering the matrix product C = AB where A is of the size
n; X nz, B is of size ny x n3, and C is of size n; x n3, with corresponding matrix
elements: a,;, b;x, and c;. Let z be an indeterminate, and associate with A and B

the polynomials P(z) and Q(z)

(ny-1)rany+ny -1
PR)= Y puz, (2.1)

=0

Note that the degree of P(z) is (ny ~ 1)ngnz + no — 1 which involves not only the size
of A through n; and n; but also the size of B through ns3. The degree of Q(z) is
nznz —1 and only involves the size of B, namely n; and n3. The p and g coefficients

are related to the matrix elements of A and B by

Ps = aj, if s=({-1)nnzg+j5-1 (2.34)
= 0, if (l - 1)712113 + n, S 8 S ingng (23b)
and
qe = by, if t=kny;—y (2.4a)
=0, if ¢2> nonj (2.4b)
3
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with: 1<1<ny, 1 <7< n; and 1 £k < na.

We claim that the elements of the matrix product C are given by selected coeificients

of the polynomial

R(z) = P(z)Q(z)
nynany—1
= Z rmz™ (2.5)

m=0

where

m
T'm = L Psdm-—s (2'6)
8=0

is the discrete convolution of the p and ¢ coefficients. These selected r,, are given by

fm = Cik , if m=(i—-1)nona+kny—1

—
[ 3]
-~3

A formal proof (which is really a verification of the formulae) is now given. ‘e begin

by rewriting. Eq (2.6) in the form

Tin = Z PsQin-s = Z ai]'bjk (2'8)
a

a,B,7,6

where the summation in the second series is over:

a: s=(i-1nynzg+j5-1 ' (2.9a)

B (i = Ungny <s < (1 - )nang + n, (2.95)

v t m-s ~kny—j (2.9¢)

6: t < ngny . (2.94d)
4




The a term is simply Eq. (2.3a), while the 3 term is the negation of Eq. (2.3b). The
v term follows from Eq. (2.4a), while the 6 term is the negation of Eq. (2.4b). Upon
substitution of the « term into the 3 inequality we immediately see that this can only

be true

1<j<ny; . (2.10)

In like fashion, substitution of the v term into the § inequality leads to the requirement

that

m=(i— l)n2n3+kn2—1 (2.11)

which is Eq. (2.7). Thus the formulae are verified.

A construction which leads to the various formulae for p, and g¢; in terms of g,
and b,k, respectively uses row vectors. Consider a row vector p whose elements we
denote by p, (coefficients of the polynomial P(z)) composed of the matrix elements a,,

of A and strings of zeros as depicted in Fig. 1A. The range of s is

0§s§nlngn3—n2n3 +nqg —1 (2.130.)

consequently
p, =0, if s> (n;—1)ngng+ny (2.13a)
=0, if s < ingng . (213b)

Furthermore the p, are related to the a,; as given by Eq. (2.3a), as the reader can

verify by construction.




In like fashion, we construct another row vector q with elements ¢, according to

Fig. 1B. Unlike p, q has no strings of zero elements. The range of ¢t is

0<t<n3nz-—1 (2.14)

so that

=0, if t>nyng . (2.15)

Within the range of t, the ¢: are related to the b;x by

gt = 05k , if t= (k ~lna+ny -3 (2.16)

which reduces to Eq. (2.4a).

As an illustrative example of the algorithm, consider the case where A is 2x2, B
is 2x3 sothat C is 2x3 (ie, ny =2, ny =2, nzg = 3). The upper limits on
the polynomials P, Q and R are 7, 5, and 11, respectively. The p,, ¢ and r,,
coeflicients evaluated according to Egs. (2.3), (2.4) and (2.7) are listed in Table 1. Upon

carrying out the convolution operation, Eq. (2.6), in conjur-tion with this table we have:

riL = €11 = Poq1 + p1go = aribyy + aj2bz (2.17q)

r3 = c12 = Pog3 ‘+ P1q2 = ar1biz + a12b22 (2.17b)

rs = ci13 = poqs + P19a = artbiz + a12b23 (2.17¢)
6
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rz = ca1 = peqr + P19o = ay by + ag2b2, (2.17d)
rg = c22 = Peqs + P792 = a1b17 + a22b22 (2.17¢)
ri1 = €23 = Peds + P7q4 = a21by13 + az2b23 (2.17f)

These are, of course, the matrix clements as obtained by more standard procedures.

This completes our description of the algorithm.




3. IMPLEMENTATION AND PARALLELISM OF ALGORITHM

In spite of the complicated looking nature of the algorithm, its smplementation in

optical computing can be carried out in straightforward fashion.

Examination of Fig. 1A shows that the matrix elements a,; of A coded into the
vector p consists of the rows of A in which strings of zeros are interspaced. Thus all
we need to do to handle A in this algorithm is to store it on an optical mask according
to Fig. 1A. The vector q containing the matrix elements 4;; is simply the columns of
B in reverse order, see Fig. 1B. Obviously we need only code B as per Fig. 1B on an
optical mask for this aspect of the implementation. Given that both these operations have
been carried out we then proceed according to the various formulae quoted in the previous

section.

The parallelism of the algorithm (assuming that all the matrix elements of A and
B can be stored in primary storage) manifests itself through the corresponding p and
q vectors. This is best seen by examination of Table 1; the first two components ¢f p
(i.e., a;; and aj2) can then be combined simultaneously with (b21, b11), (b22, bi2),
and (b;3, b;3) of the vector q. While these operations are being carried out, the last
two (nonzero) elements of p (i.e., az; and a32) are to be combined with (b2y, b11),
(b22, bi2), (b2s, b13). Thus we are able to carry out the manipulations leading to the six
matrix elements of C simultaneously. The general case of two rectangular matrices does
not require any detailed comment. Consequently, the polynomial convolution algorithm is
at lcast as fast as the methods advocated in [2, 4] under the assumed conditions of equally

accessible matriz elements.




4, INFLUENCE OF STORAGE PROBLEM ON ALGORITHM PARALLELISM (N
MATRIX MULTIPLICATION

Although the issue of matrix multiplication, in the context of optical computing,
has been cast as one of speed of execution of manipulations, this is only one aspect of
the problem as we will now see. Realistic signal processing requirements demand very
large matrices in order to achieve the resolutions necessary to fulfill the desired goals.
Because such large matrices are needed we must study the effect of storage (that is, the
extent to which all matrix elements in the two matrices under multiplication are not
equally accessible) on the inherent parallelism, and hence speed, of the various algorithms

proposed.

When the matrices are small (for convenience we will let them both be square and of
size n X n), the entire arrays containing the matrix elements of A and B can reside
simultancously in primary storage in the form of matrix masks as described in Goodman
[12], then it is possible to carry out all of the manipulations such as described in the
algorithms promulgated in {1-4]. Under the small n regime, it is essentially true that
all matrix elements are equally accessible. In fact, all the papers that we have succeeded
in locating on matrix multiplication (via optical computing) tacitly make the assumption

that all matrix elments are equally accessible, independent of n.

Let us consider, for example, the inner, intermediate, and outer product methods for
the multiplication of matrices. Reference is made to Appendix A for the development of an
efficient formalism that yields these representations. Examination of these representations
reveals that it is possible to perform the matrix-matrix product at two levels of parallelism.
At the first level, the intermediate product methods speed up the execution over the
inner product method by a factor of n. At the second level, the outer product method

achieves a factor of n?

over the inner product method. In fact, there are n parallel
multiplications and (n — 1) parallel additions to be performed, rather than the n?
sequential multiplications and n® - n?) sequential additions required at the original

element level algorithm. Unfortunately when nois large, the entire arrays cannot reside
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in primary storage, but only portions thereof. This means that the speed advantage of
the outer product method is now lost when computing large matrices, because the matrix
elements are not equally accessible! A second tacit assumption is that all arithmetical
operations of the same type are equivalent both in cost and in accuracy. This too is

violated when n is large.

Thus we cannot simply dismiss the use of the intermediate product representations
when n is large. To improve the efficiency of the computation in this situation, it is
necessary to maximize the use that is made of the matrix element data on a given matrix
mask (containing parts of A or D) while it is in primary storage. It is probably
advantageous to store matrix elements by columns. This is precisely what the column
intermediate representation does: Ce; is formed as a linear combination of Ae. with
combination coefficient drawn from Be;. Obviously one can choose to stow rows so that
the row intermediate representations is appropriate. In this scenario, we can only achieve
a factor of n in the parallelism in order to accommodate the storage problem. There
is also the bookkeeping question as to efficient storage and subsequent manipulation of
the matrix elements in accordance with the particular algorithm requirements. Reference
is made to Hockney and Jesshope [13]| for an overview of such considerations in digital

electronic computers.

One possible solution for increasing parallelism when n is large via partitioning. The
idea is certainly not new as witness the recent paper by Caulfied et al. (3] who choose to
use 2 x 2 matrices for the partitioning. Another viable approach, using the formalism
of Appendix A, is the following. Suppose that A, B and C are partitioned into
submatrices. This means that the partitioning of the rows of A and those of C is the
same, that the partitioning of the columns of B and those of C is the same, and that the
partitioning of the columns of A and of the rows of B is the same. The matrix product
can then be formed blockwise. The foregoing remains valid if transcribed by replacing
e, by E,, ete. E; is the i-th block column of the appropriately partitioned identity
matrix: the appropriate partitioning being that which is symmetric with respect to rows

and columns for the matrix multiplication in question. Consequently, we recognize AE,
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" as the j-th block column of A, EJA as the i-th block row of A, and E}AE, as the
_ (1,7)-th block element of A; thus we have

I:Z EkE: . (4'1)
k

It may be possible to store large matrices in partitioned form, with the natural units to

be stored and manipulated being the submatrices constituting the blocks.

What of the other approaches as inﬂuen}ced by the storage problem? The reduction
to an equivalent matrix-vector problem advocated by Barakat (4] suffers the same fate as
the outer product representation when n is large in that all the matrix elements are not
equally accessible. Reference to [4], see Eq. (1), shows that the Roth column decomposition
of AB contains replicas of the matrix A along the principal diagonal; so that in this
version all the matrix elements cannot be held in primary storage. Thus for large n, the
parallelism inherent in the general reduction to the Roth column decomposition for matrix-
vector multiplications is inhibited. However, there is also a Roth row decomposition of
AB, see Eq. (4) of [4], in which the matrix elements of A are now spread along diagonals.
It was hoped, in view of the previous wark by Madsen, et al. {14] on matrix multiplication
by diagonals, that the storage problem could be circumvented. A detailed analysis which
we need not reproduce indicates that the row decomposition is no more efficient than the

column decomposition as regards the primary storage of matrix elements.

Finally we come to the algorithm of the present paper. The implementation of the
algorithm as discussed in Section 3 bears directly upon the storage problem. When the
matrices are large enough to violate the equal accessibility condition, we can still maintain
a reduced degree of parallelism because the convolution algorithm does not require the
rather complicated bookkeeping that the column middle product decomposition necessi-
tates before calculations can be carried out. Even though we cannot simnultaneously store
all the matrix elements of A and B, the convolution algorithm only requires the rows of

A to be stored on separate optical masks so they can interact with the successive columns
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(in reverse order) of B sequentially stand on optical masks to produce the various rows of
C. Consequently when both A and B are large, we can still maintain a degree of par-
allelism because we do not require all the matrix elements of A and B to be in primary
storage simultaneously. All we need in primary storage are the respective row and column
of A and B. Thus, the polynomial convolution algorithm seems to be more imumune
to the storage problem than do the algorithms in [2,4]. This is because both the outer
product and Kronecker product decomposition algorithms are not modular in structure:
if the equal accessibility condition is violated there is no way to patch them up to work in
the situation where the matrices are very large. It may be possible to employ partitioning
as described in [3] or in the present paper; however, the bookkeeping is probably going ' -

be a significant obstacle.
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APPENDIX A

The purpose of this appendix is to outline an efficient formalism (due to our colleague
D. G. M. Anderson, unpublished) describing the inner product, intermediate product, and
outer product representations of matrix multiplication. We further employ this formalism

to discuss matrix partitioning, see Eq. (4.1).

To begin we avoid unnecessary complications by assuming that the two matrices, call
them A and B, are square. It is also convenient to use the vector e, which is the k-th

column of the unit matrix, t.e.,

1= Z eke: (‘41)

k=1

and the plus sign denotes the transpose (thus e/ is a row vector). Given the square

matrix A, we have
J-th colum of A = Ae;
i-throwof A =c!A
(1,7)-th element of A = e Ae,.

The usual element representation of the matrix product C = AB reads in the above

notation

efCe, = Z (e} Aei)(c/ Be, . (A.2)
k

The clement representation is the old fashioned way that matrices were multiplied before

high level programming languages were invented.

To obtain the inner product representation, we begin with the element representation,

Eq. (A.2), and delete the parenthesis on the right hand side, thus
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[

+ - + +
e Ce; = Z ¢ Acke, Be;
k

0|5 el

= (GTA)(Be,) (-4.3)

(Be;)

The reason it is termed the inner product representation is that the matrices A and B

are sandwiched between the unit vectors.

At the other extreme, we have the outer product representation which we obtain in

the following fashion from the element representation, Eq. (A.2):

(A1)

el Ce; = Z efAece/ Be; = ¢ [}_4 Aeg)(e;B)| e
k k

Consequently

C = Z (Aek)(efB) . (4.3)
k

The reason it is termed the outer product representation is that the matrices A and B
now reside at the extreme left and right of the summation. This expression can be shown

to Le equivalent to the expression given in Athale and Collins (2], see their Eq. (2).

We next consider two intermediate representations which we term the column snter-
mediate product representation and the row intermediate product representation. We return
again to Eq. (A.2):

efCe, =) e'Acie,Be; =ef ) (Aek)le] (Be,)] (1.6)
k
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or

Ce; = Y _(Aex)le] (Be;)] . (A.7)
k

This is the column intermediate product. The corresponding row intermediate product is

e!Ce; = X e A)exi(e} B)e, (4.3)
k
or
efC =) [(efA)exi(e;B) . (4.9)
k

It is a straightforward exercise to extend the above formalism to accommodate rect-

angular matrices, we omit the details.
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Table 1. Listing of the p, @ and r coefficients for the

case where A is 2#2, B is 2x3 and C is 2~ 3.
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